基于联邦学习的脑肿瘤 MRI 图像检测:隐私保护与高性能兼顾的探索

《Journal of Imaging Informatics in Medicine》:Federated Learning Framework for Brain Tumor Detection Using MRI Images in Non-IID Data Distributions

【字体: 时间:2025年03月25日 来源:Journal of Imaging Informatics in Medicine

编辑推荐:

  为解决传统机器学习处理医学图像数据的隐私和数据获取难题,研究人员开展基于联邦学习(FL)的脑肿瘤检测研究,结果显示 VGG19 模型在非 IID 数据下检测准确率高,为医疗隐私保护 AI 提供方向。

  从医学图像,尤其是磁共振成像(MRI)扫描中检测脑肿瘤,在早期诊断和治疗规划中至关重要。传统机器学习方法常依赖集中式数据,引发对数据隐私、安全以及获取大量标注数据集困难的担忧。联邦学习(FL)作为一种有前景的解决方案,可在分散设备上训练模型并保护数据隐私。然而,处理非独立同分布(non-IID)数据仍面临挑战,这在现实场景中很常见。本研究使用基于客户端 - 服务器的联邦学习框架,利用 VGG19 作为骨干模型,对 MRI 图像进行脑肿瘤检测。为提高临床相关性和模型可解释性,研究纳入了解释性技术,特别是梯度加权类激活映射(Grad-CAM)。研究人员在四个具有非 IID 数据分布的客户端上训练模型,以模拟现实情况。在性能评估方面,使用一个集中式测试数据集,该数据集由原始数据的 20% 组成,在完成联邦学习轮次后,用于统一评估模型性能。使用单独的测试数据集可确保所有模型在相同数据上进行评估,使比较更公平。由于测试数据集不属于 FL 训练过程的一部分,因此不会违反 FL 的隐私保护特性。实验结果表明,VGG19 模型在测试中达到了较高的准确率,联邦平均算法(FedAVG)下为 97.18%,联邦近端算法(FedProx)下为 98.24%,脚手架算法(Scaffold)下为 98.45%,优于其他前沿模型,展示了联邦学习处理分布式和非 IID 数据的有效性。研究结果突出了联邦学习在医学图像分析中解决隐私问题的潜力,即使在非 IID 环境下也能保持高性能。该方法为医疗应用中隐私保护人工智能的未来研究提供了一个有前景的方向。

婵犵數鍋為崹鍫曞箰閹间緡鏁勯柛顐g贩瑜版帒鐐婇柍瑙勫劤娴滈箖鏌i悢鐓庝喊婵℃彃婀遍埀顒冾潐閹稿摜鈧稈鏅濋埀顒勬涧閵堟悂寮崒鐐村€锋い鎺嶇劍閻﹀酣姊虹拠鎻掝劉缂佸甯″畷婵嬪箳濡も偓缁€澶愭煟閺冨倸甯舵潻婵囩節閻㈤潧孝婵炶尙濞€瀹曟垿骞橀幇浣瑰兊閻庤娲栧ú銊╂偩閾忓湱纾介柛灞剧懅椤︼附淇婇锝囩煉鐎规洘娲熼、鏃堝川椤栵絾绁梻浣瑰缁诲倿鎮ч幘婢勭喓鈧綆鍠楅悡娆愮箾閼奸鍤欐鐐达耿閺屾洟宕堕妸銉ユ懙閻庢鍣崜鐔肩嵁瀹ュ鏁婇柣锝呮湰濞堟悂姊绘担钘変汗闁烩剝妫冨畷褰掓惞椤愶絾鐝烽梺绉嗗嫷娈曟い銉ョ墦閺屾盯骞橀懠顒夋М婵炲濯崹鍫曞蓟閺囥垹骞㈡俊銈咃工閸撻亶鏌i姀鈺佺仭濠㈢懓妫楀嵄闁圭増婢橀~鍛存煟濞嗗苯浜惧┑鐐茬湴閸婃洟婀侀梺鎸庣箓濡瑧绮堢€n喗鐓冪憸婊堝礈濮橆厾鈹嶉柧蹇氼潐瀹曟煡鏌涢幇銊︽珖妞も晝鍏橀弻銊モ攽閸℃瑥鈪靛┑鈽嗗灠椤戝寮诲☉銏犵闁瑰鍎愬Λ锟犳⒑鐠囧弶鍞夊┑顔哄€楃划姘舵焼瀹ュ懐顦ㄥ銈嗘尵婵兘顢欓幒妤佲拺閻犲洠鈧櫕鐏侀梺鍛婃煥妤犳悂鍩㈤幘璇茬闁挎棁妫勫▓銉ヮ渻閵堝棛澧紒顔肩焸閸╂盯寮介鐔哄幈濠电偛妫欓崝鏇㈡倶閳哄偆娈介柣鎰级閸犳﹢鏌熼姘毙х€殿噮鍣e畷鎺懳旀担瑙勭彃

10x Genomics闂傚倷绀侀幖顐﹀磹閻熼偊鐔嗘慨妞诲亾妤犵偞鐗犻垾鏂裤€掓刊鐖剈m HD 闂佽瀛╅鏍窗閹烘纾婚柟鍓х帛閻撴洘鎱ㄥΟ鐓庡付闁诲繒濮烽埀顒冾潐濞叉粓宕伴幘鑸殿潟闁圭儤顨呴獮銏℃叏濮楀棗澧┑顔煎暣濮婃椽宕ㄦ繝鍌滅懆濠碘槅鍋呯划宥夊Φ閺冨牆绠瑰ù锝囨嚀娴犮垽姊洪幖鐐插姉闁哄懏绮撻幃楣冩焼瀹ュ棛鍘遍棅顐㈡搐椤戝懏鎱ㄩ埀顒€鈹戦悙瀛樼稇婵☆偅绮撴俊鐢稿箛閺夊灝宓嗛梺缁樶缚閺佹悂鎮℃担铏圭=濞达絽鎲″﹢鐗堜繆閻愯埖顥夐摶鐐烘煕瑜庨〃鍛矆閸℃稒鐓曢柍鈺佸暈缂傛岸鏌嶈閸忔稓鍒掑▎鎾虫瀬鐎广儱顦伴弲鎼佹煥閻曞倹瀚�

濠电姷鏁搁崑娑樜涙惔銊ュ瀭闁兼祴鏅滃畷鏌ユ倵閿濆骸浜為柍缁樻閹鏁愭惔鈥崇缂備椒鑳跺▍澧俰st闂傚倷绶氬ḿ褍螞濡ゅ懏鏅濋柨婵嗘川缁犳柨顭块懜闈涘婵☆偅蓱閵囧嫰骞樼捄杞扮捕缂傚倸绉崇欢姘跺蓟濞戙垹鍐€闁靛ě鍐f嫛婵犵數鍋涢悧濠囧储椤ョSPR缂傚倸鍊烽悞锔剧矙閹烘鍎庢い鏍仜閻掑灚銇勯幒鍡椾壕濡炪倧缂氶崡鎶藉箖瑜斿畷顐﹀Ψ閵堝棗濯伴梻渚€鈧偛鑻晶鏉戔攽閳ユ剚鍤熼柍褜鍓ㄧ紞鍡涘礈濮樿泛姹查柍鍝勬噺閸婂灚绻涢幋鐐垫噧濠殿喖鍟撮弻娑㈠籍閹炬潙顏�

闂傚倷绀侀幉锟犮€冮崱妞曞搫饪伴崨顓炵亰闂婎偄娲︾粙鎺楀吹閸曨垱鐓熼柟閭﹀墻閸ょ喖鏌曢崼鐔稿唉妤犵偞鐗犲鍫曞箣閻樻鍞堕梻浣告啞閻熴儱螞濠靛棭娼栧┑鐘宠壘鎯熼梺闈涱檧缁茬厧霉閻戣姤鐓熼柣妯夸含閸斿秶鎲搁弶鍨殻闁诡喓鍎甸弫鎾绘晸閿燂拷 - 濠电姷鏁搁崕鎴犲緤閽樺鏆︽い鎺戝閻鏌涢埄鍐$細妞も晜鐓¢弻娑㈠焺閸愭儳姣€闂佸湱鍎ら幐楣冦€呴悜钘夌閺夊牆澧界粔鐢告煕鎼淬垹鐏ラ柍钘夘樀楠炴﹢顢涘顐㈩棜婵犵數鍋為崹鍫曞箹閳哄倻顩叉繝濠傚暟閺嗭箓鏌i弮鍥仩缁炬儳銈搁弻娑㈠焺閸愵厼顥濋梺鍛婃⒐鐢繝骞冨Δ鍛嵍妞ゆ挾鍋樺Σ鎰版⒑缂佹ḿ鈯曢柣鐔濆洤绠悗锝庡枛缁犳煡鏌熸导瀛樻锭闁诡喕绶氬娲川婵犲倻顑傛繝鈷€鍕垫疁鐎殿喗濞婇幃銏ゆ偂鎼达綆鍞规俊鐐€栭弻銊╂倶濠靛牏鐜绘繛鎴欏灪閻撴瑩鎮归妸銉Ц闁稿﹤顭烽幃鐑藉閵堝棛鍘卞┑鐐叉閿氶柣蹇嬪劜閵囧嫰顢曢姀鈺佸壎閻庤娲滄繛鈧€殿喕绮欓、鏍敃閿濆懏璇為悗娈垮枟閹倿寮幘缁樻櫢闁跨噦鎷�

婵犵數鍋為崹鍫曞箰閹间緡鏁勯柛顐g贩瑜版帒鐐婃い鎺嗗亾鏉╂繃绻濋悽闈浶㈤悗姘煎櫍閹本鎯旈妸锔惧幘閻庤娲栧ú銈嗙濠婂牊鐓曢柣鎰摠鐏忥箓鏌熼挊澶娾偓濠氬焵椤掑﹦绉甸柛鎾村哺椤㈡棃濡舵径瀣化闂佽澹嬮弲娑欎繆閾忓湱纾奸柕濞у喚鏆梺鐟板槻閹冲酣銈导鏉戠闁靛ě鈧崑鎾寸節濮橆厾鍘搁柣搴秵閸嬪嫭鎱ㄩ崼銉︾厸鐎光偓閳ь剟宕版惔銊ョ厺闁哄啫鐗嗛崡鎶芥煟濡寧鐝慨锝呭閺岋絾鎯旈姀鈶╁闂佸憡姊圭敮鈥崇暦濠靛鍋勯柣鎾冲閵夆晜鐓ラ柣鏇炲€圭€氾拷

相关新闻
    生物通微信公众号
    微信
    新浪微博
    • 搜索
    • 国际
    • 国内
    • 人物
    • 产业
    • 热点
    • 科普
    • 急聘职位
    • 高薪职位

    知名企业招聘

    今日动态 | 人才市场 | 新技术专栏 | 中国科学人 | 云展台 | BioHot | 云讲堂直播 | 会展中心 | 特价专栏 | 技术快讯 | 免费试用

    版权所有 生物通

    Copyright© eBiotrade.com, All Rights Reserved

    联系信箱:

    粤ICP备09063491号