机器学习赋能临床试验质量容忍限风险评估:创新监测方案引领变革

【字体: 时间:2025年03月17日 来源:Therapeutic Innovation & Regulatory Science 2

编辑推荐:

  为解决传统临床试验监测弊端,研究人员开展基于机器学习的 QTL 风险评估研究,有望保障患者安全、降本增效。

  传统的临床试验监测过程严重依赖现场访视以及对通过电子数据采集(Electronic Data Capture,EDC)系统上报的累积患者数据进行人工审核,既耗时又耗费资源。最近出现的基于风险的监测(Risk-Based Monitoring,RBM)和质量容忍限(Quality Tolerance Limit,QTL)框架,为传统的基于源数据核查(Source Data Verification,SDV)的质量保证提供了更高效的替代方案。这些框架旨在主动识别影响患者安全和数据完整性的系统性问题。本文提出了一种基于机器学习的方法,用于实现对临床试验 QTL 风险评估的实时、自动化监测。与传统质量保证过程中基于单一来源数据和任意设定固定阈值评估 QTL 不同,研究利用 QTL-ML 框架整合多个临床领域的信息,在临床项目、研究、试验点和患者层面预测各类 QTL。此外,该方法无需假设,不依赖历史预期,而是依据动态积累的试验数据自动预测质量容忍限风险。这一嵌入国际人用药品注册技术协调会 E6(International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use E6,ICH-E6)推荐的 RBM 原则的创新性机器学习 QTL 监测解决方案,有潜力改变申办方保护患者安全的能力,缩短试验周期,并降低试验成本。

婵炴垶鎸搁鍫澝归崶鈹惧亾閻熼偊妲圭€规挸瀛╃€靛ジ鏁傞悙顒佹瘎闁诲孩绋掗崝鎺楀礉閻旂厧违濠电姴娲犻崑鎾愁潩瀹曞洨鐣虹紓鍌欑濡粓宕曢鍛浄闁挎繂鐗撳Ο瀣煙濞茶骞橀柕鍥ㄥ哺瀵剟骞嶉鐣屾殸闂佽偐鐡旈崹铏櫠閸ф顥堥柛鎾茬娴狀垶鏌曢崱妤婂剱閻㈩垱澹嗗Σ鎰板閻欌偓濞层倕霉閿濆棙绀嬮柍褜鍓氭穱铏规崲閸愨晝顩烽柨婵嗙墦濡鏌涢幒鎴烆棡闁诲氦濮ょ粚閬嶅礃椤撶姷顔掗梺璇″枔閸斿骸鈻撻幋锔藉殥妞ゆ牗绮岄埛鏍煕濞嗘劕鐏╂鐐叉喘閹秹寮崒妤佹櫃

10x Genomics闂佸搫鍊瑰姗€骞栭—娓媠ium HD 閻庢鍠掗崑鎾绘煕濮樼厧鐏犵€规洜鍠撶槐鎺楀幢濮橆剙濮冮梺鍛婂笒濡粍銇旈幖浣瑰仢闁搞儮鏅滈悾閬嶆煕韫囧濮€婵炴潙妫滈妵鎰板即閻樼數鐓佺紓浣告湰濡炶棄螞閸ф绀嗛柛鈩冡缚閳ь兛绮欓弫宥夋晸閿燂拷

濠电偛妫庨崹鑲╂崲鐎n偆鈻旈悗锝庡幗缁佺櫉wist闂侀潧妫楅敃锝囩箔婢舵劕妫樻い鎾跺仜缂嶄線鏌涢弽銊у⒈婵炲牊鍘ISPR缂備焦绋掗惄顖炲焵椤掆偓椤︿即鎮ч崫銉ゆ勃闁逞屽墴婵″鈧綆鍓氶弳鈺呮倵濞戞瑥濮冮柛鏃撴嫹

闂佸憡顨嗗ú婊呭垝韫囨稒鍤勯柣鎰嚟閵堟挳骞栭弶鎴犵闁告瑥妫濆濠氬Ω閵夛絼娴烽柣鐘辩劍瑜板啴鎮ラ敓锟� - 濠电儑绲藉畷顒勫矗閸℃ḿ顩查柛鈩冾嚧閹烘挾顩烽幖杈剧秵閸庢垵鈽夐幘顖氫壕婵炴垶鎼╂禍婊冪暦閻旇櫣纾奸柛鈩冭壘閸旀帡鎮楅崷顓炰槐闁绘稒鐟ч幏瀣箲閹伴潧鎮侀梺鍛婂笧婢ф寮抽悢鐓庣妞ゆ柨鐏濈粣娑㈡煙鐠ㄥ鍊婚悷銏ゆ煕濞嗘ê鐏ユい顐㈩儔瀹曠娀寮介顐e浮瀵悂鏁撻敓锟�

婵炴垶鎸搁鍫澝归崶顒€违濠电姴瀚惌搴ㄦ煠瀹曞洤浠滈柛鐐存尦閹藉倻鈧綆鍓氶銈夋偣閹扳晛濡虹紒銊у閹峰懎饪伴崘銊р偓濠氭煛鐎n偄濮堥柡宀€鍠庨埢鏃堝即閻樿櫕姣勯柣搴㈢⊕閸旀帡宕濋悢鐓幬ラ柨鐕傛嫹

相关新闻
    生物通微信公众号
    微信
    新浪微博
    • 搜索
    • 国际
    • 国内
    • 人物
    • 产业
    • 热点
    • 科普
    • 急聘职位
    • 高薪职位

    知名企业招聘

    今日动态 | 人才市场 | 新技术专栏 | 中国科学人 | 云展台 | BioHot | 云讲堂直播 | 会展中心 | 特价专栏 | 技术快讯 | 免费试用

    版权所有 生物通

    Copyright© eBiotrade.com, All Rights Reserved

    联系信箱:

    粤ICP备09063491号