EnSCAN:多平台 GWAS 研究助力晚发性阿尔茨海默病致病变异筛选

【字体: 时间:2025年03月05日 来源:BioData Mining 4.0

编辑推荐:

  研究人员针对晚发性阿尔茨海默病(LOAD)开展多平台 GWAS 研究,开发 EnSCAN 框架筛选致病变异,意义重大。

濠电姷鏁搁崑鐐哄垂閸洖绠插ù锝呭濞存牠鏌曟繛褍妫楀皬闂備焦鏋奸弲娑㈠疮娴兼潙鐓樼€广儱顦伴悡鏇㈡煙娴煎瓨娑ф鐐瘁缚缁辨帡鎮╅崫鍕優缂備浇椴哥敮妤€顕ラ崟顓涘亾閿濆簼绨藉ù鐘虫綑椤啴濡堕崱妤冾儌闂佸摜濮甸悧鐘荤嵁閸℃稑绀冩い鏃囧亹椤︽澘顪冮妶鍛婵☆偅鐩畷鎰版倷閻戞ǚ鎷洪梺闈╁瘜閸欌偓婵$偓鎮傞弻娑樷枎韫囨洜顔婂┑鈥冲级閸旀洟鍩為幋鐘亾閿濆骸浜滃ù鐘虫そ濮婅櫣绱掑Ο鑽ゅ弳闂佸湱鈷堥崑濠囧春濞戙垹鍐€妞ゆ挾鍟块幏鍝勵渻閵堝棗濮х紒韫矙瀹曨偄煤椤忓懐鍘遍梺鎸庣箓鐎氼剙鐣甸崱妯诲弿濠电姴鍊归崑銉р偓瑙勬礋娴滆泛顕i幘顔藉亹闁告瑥顦伴悵锕傛⒒娴e憡鎯堟い锔诲亰瀵彃饪伴崼鐔蜂画閻熸粍妫冮獮鍡樼瑹閳ь剟鐛幒鎳虫棃鍩€椤掆偓铻炴慨妞诲亾闁哄本鐩俊鐑藉閳╁啰褰囬柣鐔哥矋濠㈡ê岣块敓鐘茶摕闁靛ǹ鍎Σ鍫熶繆椤栨氨浠㈡い蹇e幖椤啴濡堕崒娑欐闂佹悶鍎洪悡鍫濐潖閸ф鈷戦梺顐ゅ仜閼活垱鏅堕幘顔界厵鐎规洖娲ら弸鎴炵箾閻撳海绠诲┑鈩冩倐閺佸倿鏌ㄩ姘濡炪倖娲嶉崑鎾绘煛鐏炲墽鈽夐摶锝夋煟閹惧啿顒㈤柣搴ㄧ畺濮婃椽宕崟闈涘壈闂佸摜鍠愰幐鍐差嚕椤愩埄鍚嬮柛娑卞灡濞堟洟姊洪崨濠傚闁稿骸鍟块埢鎾诲蓟閵夛腹鎷洪柣鐘差儏妤犵ǹ螞椤撱垹鍚规繛鍡樺灩绾剧晫鈧箍鍎遍幊鎰€存繝纰樷偓鍐茬骇闁告梹鐟﹂幈銊╁焵椤掑嫭鐓熸俊顖氱仢閻ㄦ椽鏌熼绗哄仮婵﹥妞介獮鎰償閳ヨ櫕鐏嗛梻浣烘嚀閸ゆ牠骞忛敓锟�缂傚倸鍊搁崐宄邦渻閹烘梻鐭氶柛顐f礀閸ㄥ倻鐥鐐村櫡濞存粌缍婇弻娑㈠Ψ椤旂厧顫╅梺绋胯閸旀垿寮婚敐澶婃闁圭ǹ楠搁弳鍫ユ⒑鐠囨彃鍤遍柟鍑ゆ嫹
  

晚发性阿尔茨海默病研究新突破:多平台 GWAS 助力致病变异筛选

在人口老龄化加剧的当下,晚发性阿尔茨海默病(Late-onset Alzheimer’s disease,LOAD)逐渐成为一个沉重的健康负担。这是一种进行性且复杂的神经退行性疾病,患者会出现认知能力下降,如记忆力减退、智力丧失等症状,严重影响生活质量 。目前,LOAD 的病因尚未完全明确,其复杂的遗传机制就像一团迷雾,阻碍着早期诊断和有效治疗的步伐。
基因组 - 全基因组关联研究(Genome-Wide Association Studies,GWAS)虽能探索候选基因座上单个变异的统计相互作用,但单变量分析却忽视了变异之间的相互关系。而机器学习(Machine learning,ML)算法虽可捕捉隐藏模式,考虑变异间的非线性相互作用,有助于理解复杂遗传疾病的遗传易感性,但在处理不同平台数据时,由于属性差异,常规的多数投票法无法适用。因此,开发一种新方法来整合多平台数据,筛选出与 LOAD 相关的致病变异迫在眉睫。
来自土耳其中东技术大学(METU)等机构的研究人员 Onur Erdogan、Cem Iyigun 和 Ye?im Ayd?n Son 等针对这一难题展开研究。他们的研究成果发表在《BioData Mining》杂志上,为 LOAD 的研究带来了新的曙光。
研究人员采用了多种关键技术方法。数据来源上,使用了来自阿尔茨海默病神经影像学倡议(ADNI)数据库和美国国立生物技术信息中心(NCBI)的基因型和表型数据库(dbGaP)的 GWAS 数据集,涵盖了不同种族人群。分析流程方面,首先利用 PLINK 工具进行 GWAS 分析,筛选出与 LOAD 相关的单核苷酸变异(Single Nucleotide Variation,SNV),之后采用随机森林(Random Forest,RF)算法进行特征选择和模型构建,通过五折交叉验证优化模型参数。最后,开发了 EnSCAN 评分算法,整合多模型信息,对 SNV 进行优先级排序。
下面来看看具体的研究结果:

1. 构建独立模型

研究人员基于 ADNI 和 dbGaP 计划的基因分型数据,开发了三种不同的 LOAD 模型。利用 PLINK 进行 GWAS 分析并经过 p 值过滤后,对每个数据集采用多步 RF 模型。结果显示,在 ADNI、NCRAD 和 GenADA 数据集上,LOAD RF 模型的测试性能分别为 72.9%、68.8% 和 92.4% ;LOAD RF-RF 模型的测试性能分别为 74.0%、72.1% 和 85.1%。不同数据集筛选出的 SNV 数量和模型准确性有所差异,且三个数据集未发现共识变异。

2. 多平台变异优先级排序

运用 EnSCAN 算法对 SNV 进行迭代评分,83 个 SNV 获得最高可能得分 “3.31”。通过 SNPNexus 在遗传关联数据库(GAD)中查询发现,43 个具有最高得分的 SNV 为蛋白质编码变异,涉及 CSMD2、NR5A2 等多个基因。这些基因相关变异除了与 AD 相关外,还与胆固醇代谢、2 型糖尿病等多种疾病表型有关。

3. 评估 EnSCAN 评分

由于 EnSCAN 评分是离散的,代表不同类别的 SNV,不建议设置严格阈值。研究人员对不同评分类别的变异进行富集分析,发现不同评分类别与不同的生物学过程相关。例如,评分 2.31 的变异富集出 “AD 相关过程”“细胞黏附分子 / 生物细胞黏附” 等;评分 3.31 的变异则与 “多巴胺能神经元上的烟碱活性” 相关 。这表明随着 EnSCAN 评分增加,生物学过程和注释逐渐聚焦,有助于研究人员缩小研究范围。
研究结论和讨论部分指出,研究人员开发的 EnSCAN 框架能够整合多平台 GWAS 数据,有效筛选出与 LOAD 相关的候选致病变异,为后续研究提供了重要线索。通过富集分析,揭示了不同 EnSCAN 评分变异相关的生物学过程,为理解 LOAD 的发病机制提供了新视角。不过,该研究也存在一定局限性,如部分数据集未报告 APOE 基因的基因型,无法探讨其对 LOAD 的影响及与所选变异的相互作用 。此外,所检测到的 SNV 还需在临床环境中进一步验证其对 LOAD 早期或鉴别诊断的预测能力。
尽管如此,这项研究依然意义重大。它为 LOAD 的研究开辟了新方向,有望推动 AD 早期诊断和治疗方法的发展,加速新疗法的研发进程,从而减轻这种高负担疾病给社会和家庭带来的沉重压力。同时,该研究框架也为其他复杂遗传疾病的研究提供了借鉴,具有广泛的应用前景。

濠电姷鏁搁崑鐐哄垂閸洖绠伴柟闂寸贰閺佸嫰鏌涢锝囪穿鐟滅増甯掗悙濠囨煃鐟欏嫬鍔ゅù婊堢畺閺岋綁鎮㈤悡搴濆枈濠碘剝褰冨﹢閬嶅焵椤掑喚娼愰柟绋挎憸閳ь剚绋堥弲婵嬪焵椤掑嫭娑ч柕鍫熸倐瀵偊宕掗悙鏉戔偓閿嬨亜閹哄秶鍔嶉柣锕€閰e铏规嫚閹绘帩鍔夌紓浣割儐鐢€崇暦濠靛绠虫俊銈傚亾缂佲偓婢舵劖鐓熼柡鍐ㄥ€哥敮鑸垫交濠靛洨绡€闁汇垽娼у瓭濠电偠灏欐繛鈧€规洘鍨块獮姗€骞囨担鐟板厞闁诲氦顫夊ú鏍洪妸鈺傚仼闁惧繐婀辩壕浠嬫煕鐏炲墽鎳呮い锔奸檮娣囧﹪顢曢敐鍥╃厜閻庤娲樺ú鐔笺€侀弮鍫濆窛妞ゆ牭绲剧粊顐︽⒒娴g懓顕滅紒璇插€块幃褔骞樺鍕枔閳ь剨缍嗛崰妤呮偂濞嗘劗绠鹃柤濂割杺閸ゆ瑦顨ラ悙杈捐€块柡灞炬礋瀹曞爼濡搁妷銉︽嚈闁诲孩顔栭崳顕€宕滈悢鑲╁祦鐎广儱顦介弫濠囨煟閿濆懏婀版繛鍫熸倐濮婄粯鎷呴挊澶夋睏闂佺儵鍓濆Λ鍐ㄧ暦瑜版帗鎯炴い鎰剁稻閻濈兘姊虹粔鍡楀濞堟洘銇勯妷銉уⅵ闁哄本鐩獮姗€鎳犻澶嬓滃┑鐐差嚟婵參宕归崼鏇炶摕闁哄洢鍨归獮銏′繆閵堝拑宸ラ柛鎾讳憾閺岋綁濮€閳轰胶浠繝銏㈡嚀濡宓勯梺鍦濠㈡﹢锝為崨瀛樼厽婵炲棗鑻禍鎯р攽閻愯尙婀撮柛濠冩礋濠€渚€姊洪幐搴g畵婵☆偅鐟х划鍫⑩偓锝庡枟閻撳啰鎲稿⿰鍫濈婵﹩鍘鹃埞宥夋煣韫囨凹娼愮€规洘鐓¢弻娑㈠箛閵婏附鐝栧銈傛櫇閸忔﹢寮婚妸銉㈡斀闁糕剝鐟ラ埅闈涒攽閳藉棗鐏犳い鎴濐樀瀵鈽夐姀鐘殿唺闂佺懓顕崕鎰涢敓鐘斥拺閻犲洤寮堕崬澶娾攽椤斿搫鈧鍒掑鑸电劶鐎广儱鎳愰ˇ銊ヮ渻閵堝棙灏靛┑顔惧厴椤㈡瑩骞掑Δ浣叉嫼闁荤姴娲犻埀顒冩珪閻忎線姊洪崨濠冪叆濡ょ姵鎮傞崺銏ゅ箻鐠囪尙顓洪梺鎸庢濡嫬鈻撻妷銉富闁靛牆妫涙晶顒傜磼椤旇偐鐒搁柛鈺傜洴瀵粙顢橀悢鍝勫箞婵犵數鍋涘Λ娆撳礉閺囥垺鍊堕柍鍝勫亞濞堜粙鏌i幇顒€绾ч柛鐘筹耿閺岀喖顢涘姣櫻呪偓娈垮櫘閸o絽鐣烽幒鎳虫梹鎷呯憴鍕絻

10x Genomics闂傚倸鍊风粈渚€骞栭锕€纾归柣鐔煎亰閻斿棙鎱ㄥ璇蹭壕濡ょ姷鍋為悧鐘诲灳閺傝¥鈧帗鍒婇悥鍓坢 HD 闂備浇顕х€涒晠顢欓弽顓炵獥闁圭儤顨呯壕濠氭煙閸撗呭笡闁绘挻娲橀幈銊ノ熼悡搴′粯闂佽绻掓慨鐑藉焵椤掑喚娼愭繛鍙夌矒瀹曚即骞橀懜娈挎綗闂佸湱鍎ら〃鍛寸嵁閵忊剝鍙忔慨妤€妫楁晶顔尖攽椤旂厧鏆f慨濠冩そ瀹曘劍绻濋崒婊呮噯婵犵妲呴崑鍛垝瀹ュ桅闁哄啫鐗嗙粻鐟懊归敐鍥ㄥ殌濞寸姰鍨藉娲箹閻愭彃濮夐梺鍝勬噺缁捇骞冩ィ鍐╃劶鐎广儱妫涢崢閬嶆椤愩垺鎼愭い鎴濇噺閹便劑鍩€椤掆偓閳规垿鎮欑€涙ḿ绋囧┑鈽嗗亝缁挻淇婇悽绋跨疀闁哄鐏濆畵鍡涙⒑缂佹ǘ缂氶柡浣规倐閹剝鎷呴搹鍦紳婵炶揪绲介幉鈥筹耿閻楀牅绻嗛柣鎰煐椤ュ鎽堕悙鐑樼厱鐟滃酣銆冮崨顖滅焼闁糕剝绋掗悡鏇㈡煃閳轰礁鏆堢紓鍌涘哺閺屽秷顧侀柛蹇旂〒閸掓帒鈻庨幘铏€悗骞垮劚椤︿即寮查幖浣圭叆闁绘洖鍊圭€氾拷

婵犵數濮烽弫鎼佸磻濞戞娑欐償閵娿儱鐎梺鍏肩ゴ閺呮粌鐣烽弻銉﹀€甸柨婵嗛娴滅偤鏌嶇紒妯活棃闁诡喗顨婇弫鎰償閳ュ磭顔戠紓鍌欐閼宠泛鈻嶆晶淇皊t闂傚倸鍊风欢姘缚瑜嶈灋婵°倕鎳忛弲婵嬫煥濠靛棙宸濈紒鐘虫煥椤潡鎳滈棃娑橆潓濠碘槅鍋呰摫闁靛洤瀚伴獮妯兼崉鏉炴壆鎹曠紓鍌氬€哥粔宕囨濮樿泛钃熸繛鎴欏灩閸愨偓闂侀潧臎閸愶絾瀚涘┑鐘垫暩閸嬫盯鎮ф繝鍥у偍妞ゃ儳顎怱PR缂傚倸鍊搁崐鐑芥倿閿斿墽鐭欓柟鐑橆殕閸庡孩銇勯弽顐粶闁绘帒鐏氶妵鍕箳閸℃ぞ澹曟俊鐐€х紓姘跺础閹惰棄绠栫憸鏂跨暦椤愶箑唯闁靛牆妫楁刊浼存⒒娓氣偓閳ь剛鍋涢懟顖涙櫠閺夋垟鏀介柍銉﹀墯閸ょ喖鏌嶈閸撱劎绱為崱娑樼婵ǹ娉涘Ч鏌ユ煃閸濆嫭鍣洪柛濠傜仛缁绘盯骞嬮悙鍨櫑婵犳鍠栭崯鎾蓟濞戙垹绫嶉柟鐐綑椤忥拷

闂傚倸鍊风粈渚€骞夐敓鐘偓鍐幢濡炴洖鎼オ浼村川椤撶偟浜伴梻濠庡亜濞诧妇绮欓幒妤€鍚归柛鏇ㄥ灡閻撶喖鏌熼柇锕€澧婚柛銈囧枛閺屾洟宕奸悢绋垮攭濡ょ姷鍋為悧鐘差嚕閸洖绠i柣妯活問閸炲爼姊绘担鍛婂暈闁荤喆鍎辫灋婵犻潧妫ḿ鏍р攽閻樺疇澹橀幆鐔兼⒑闂堟侗妾х紒鑼帶闇夐柣鎴eГ閻撶喖鏌eΟ澶稿惈闁告柨绉堕幉鎼佸级閸喗娈婚梺璇″枔閸庣敻寮幘缁樻櫢闁跨噦鎷� - 婵犵數濮烽弫鎼佸磿閹寸姴绶ら柦妯侯槺閺嗭附銇勯幒鎴濐仼闁活厽顨婇弻娑㈠焺閸愶紕绱板銈傛櫆閻擄繝寮诲☉銏犵労闁告劖鍎冲В鈧梻浣告贡閸庛倝骞愭ィ鍐︹偓鍛存倻閽樺顔愰柡澶婄墕婢х晫绮旈悽鍛婄厱閹兼番鍨归悘銉╂煃閽樺妯€妤犵偞锕㈤、娑橆潩椤愩埄妫滃┑鐘垫暩閸嬬偤宕归崼鏇炵闁冲搫鍊婚々鍙夌節婵犲倸鏆熼柡鍡畵閺岋綁寮崶顭戜哗缂佺偓鍎抽妶鎼佸蓟濞戙垹鐒洪柛鎰靛幖椤ユ繈姊洪崨濠冣拹閻㈩垽绻濋獮鍐ㄎ旈崨顓熷祶濡炪倖鎸鹃崑妯何i幇鐗堚拺缂備焦岣块埊鏇㈡煟閻旀繂娲ょ粻顖炴倵閿濆骸鏋涚紒鐘崇叀閺岀喐瀵肩€涙ɑ閿梺璇″枙缁舵艾顫忓ú顏勫窛濠电姴鍊婚鍌涚節閳封偓閸曞灚鐤侀悗娈垮枟婵炲﹪骞冮姀銈嗗亗閹艰揪缍嗛崬瑙勪繆閻愵亜鈧牠寮婚妸鈺傚€舵繝闈涚墢閻滅粯绻涢幋娆忕仾闁绘挻鐟╅幃褰掑Ω閵夘喗笑闂佺ǹ锕ら…鐑藉箖閻戣棄顫呴柕鍫濇閸樺崬鈹戦悙鍙夘棡闁挎岸鏌h箛瀣姕闁靛洤瀚伴、鏇㈠閳轰礁澹庨柣搴ゎ潐濞叉粍绻涢埀顒傗偓娈垮枙缁瑩銆侀弽顓ф晝闁挎繂鎳忕拠鐐烘倵濞堝灝鏋熼柟顔煎€垮顐﹀箻缂佹ɑ娅㈤梺璺ㄥ櫐閹凤拷

濠电姷鏁搁崑鐐哄垂閸洖绠伴柟闂寸贰閺佸嫰鏌涢锝囪穿鐟滅増甯掗悙濠冦亜閹哄棗浜鹃弶鈺傜箖缁绘繈鎮介棃娴躲垽鎮楀鐓庢珝闁诡垰鏈幆鏃堝Ω閿旀儳骞橀柣搴ゎ潐濞叉牕煤閵堝棛顩锋繝濠傜墛閻撴洟鏌i幇顒傛憼閻忓骏绠撻弻鐔兼寠婢跺ň鍋撴繝姘劦妞ゆ帒锕︾粔鐢告煕閹炬潙鍝烘い銏℃婵¤埖寰勭€n亙鍖栭梻浣筋潐婢瑰寮插☉娆庣箚闁惧繐婀辩壕濂告煏婵炑冨枤閺嗩參姊洪悷鏉挎Щ闁瑰啿閰i妶顏呭閺夋垹顦ㄩ梺闈浤涢埀顒勫磻閹惧绡€婵﹩鍘鹃崢鎼佹煟鎼搭垳绉甸柛瀣閹便劑宕奸妷锔惧幐閻庡厜鍋撻柍褜鍓熷畷鐗堟償閵娿儳鍘洪梺鍝勫暙閻楀棝宕¢幎鑺ョ厽婵☆垱瀵ч悵顏呮叏閿濆懎顏柡宀嬬稻閹棃濮€閳垛晛顫岄梻浣告啞濮婂湱鏁垾宕囨殾婵犻潧顑嗛崑鍕煟閹惧啿顔傞柕澶嗘櫆閻撱儵鏌i弴鐐测偓鍦偓姘炬嫹

相关新闻
生物通微信公众号
微信
新浪微博
  • 急聘职位
  • 高薪职位

知名企业招聘

今日动态 | 人才市场 | 新技术专栏 | 中国科学人 | 云展台 | BioHot | 云讲堂直播 | 会展中心 | 特价专栏 | 技术快讯 | 免费试用

版权所有 生物通

Copyright© eBiotrade.com, All Rights Reserved

联系信箱:

粤ICP备09063491号