DNA¸´ÖÆÆðʼ½×¶ÎH2A.ZºËСÌåµÄÑ¡ÔñÐÔʶ±ð»úÖÆ

¡¾×ÖÌ壺 ´ó ÖРС ¡¿ ʱ¼ä£º2023Äê08ÔÂ03ÈÕ À´Ô´£ºÖпÆÔº

±à¼­ÍƼö£º

¡¡¡¡ÉúÎïÒÅ´«ÐÅÏ¢µÄ¾«È·´«µÝ¶ÔÉúÃüµÄ·±Ñܺͽø»¯ÖÁ¹ØÖØÒª£¬¸ßµÈÕæºËÉúÎïDNA¸´ÖÆÐèҪȷ±£Ç×´úDNA°üº¬µÄÒÅ´«ÐÅϢ׼ȷ´«µÝ¸ø×Ó´ú£¬¸´ÖÆÆðʼλµãµÄÕýÈ·Ñ¡ÔñÊÇÆäÖеÄÖØÒª»·½Ú¡£×îÐÂÑо¿±íÃ÷£¬ÔÚ¶àϸ°û¶¯ÎïÖк¬×éµ°°×±äÌåH2A.ZµÄºËСÌåͨ¹ý½áºÏ×éµ°°×Àµ°±Ëá¼×»ùתÒÆøSUV420H1´Ù½ø×éµ°°×H4µÚ20λÀµ°±ËáµÄ¶þ¼×»ù»¯£¨H4K20me2£©µÄ¸»¼¯£¬²¢ÕÐļÆðʼʶ±ð¸´ºÏÎïÍê³É¸´ÖÆÆðʼλµãµÄÑ¡Ôñ1¡£

¡¡¡¡

    ÉúÎïÒÅ´«ÐÅÏ¢µÄ¾«È·´«µÝ¶ÔÉúÃüµÄ·±Ñܺͽø»¯ÖÁ¹ØÖØÒª£¬¸ßµÈÕæºËÉúÎïDNA¸´ÖÆÐèҪȷ±£Ç×´úDNA°üº¬µÄÒÅ´«ÐÅϢ׼ȷ´«µÝ¸ø×Ó´ú£¬¸´ÖÆÆðʼλµãµÄÕýÈ·Ñ¡ÔñÊÇÆäÖеÄÖØÒª»·½Ú¡£×îÐÂÑо¿±íÃ÷£¬ÔÚ¶àϸ°û¶¯ÎïÖк¬×éµ°°×±äÌåH2A.ZµÄºËСÌåͨ¹ý½áºÏ×éµ°°×Àµ°±Ëá¼×»ùתÒÆøSUV420H1´Ù½ø×éµ°°×H4µÚ20λÀµ°±ËáµÄ¶þ¼×»ù»¯£¨H4K20me2£©µÄ¸»¼¯£¬²¢ÕÐļÆðʼʶ±ð¸´ºÏÎïÍê³É¸´ÖÆÆðʼλµãµÄÑ¡Ôñ1¡£

¡¡¡¡2023Äê8ÔÂ2ÈÕ£¬Öйú¿ÆѧԺÉúÎïÎïÀíÑо¿ËùÖÜÕþ¿ÎÌâ×éÁªºÏ±¾ËùÀî¹úºì¡¢Öìƽ¿ÎÌâ×飬ÒÔ¼°ÉîÛÚÍåʵÑéÊÒÁúº£Õä¿ÎÌâ×飬ÔÚ¡¶Molecular Cell¡·ÔÚÏß·¢±íÁËÌâΪStructural insight into H4K20 methylation on H2A.Z-nucleosome by SUV420H1µÄÑо¿ÂÛÎÄ£¬±¨µÀÁËÈËÔ´SUV420H1½áºÏH2A.ZºËСÌåµÄ¸ß·Ö±æÂʵ羵½á¹¹£¬½ÒʾÁËSUV420H1ÓÅÏÈʶ±ðH2A.ZºËСÌå²¢´ß»¯H4K20me2µÄ·Ö×Ó»úÀí£¨Í¼1£©¡£


ͼ1£ºSUV420H1ÓëH2A.Z/H2AºËСÌåºÍ¸´ºÏÎï½á¹¹Ê¾Òâͼ

¡¡¡¡¸ÃÑо¿Í¨¹ý»¯Ñ§ºÏ³ÉµÄ·½·¨ÔÚ´ß»¯Î»µãÒýÈëÕýÁÁ°±ËáÍ»±ä£¬Ìá¸ßÁËSUV420H1-H2A.ZºËСÌ帴ºÏÎïµÄÎȶ¨ÐÔ£¬²¢½âÎöÁË3.2 ŵĽüÔ­×Ó·Ö±æÂʵÄÀ䶳µç¾µ½á¹¹¡£½á¹¹ÏÔʾSUV420H1ÓëºËСÌåÖеÄH4 N¶Ë¡¢DNA¡¢ÒÔ¼°ËáÐÔÇøÓòµÈ½øÐнáºÏ¡£ÆäÖУ¬ H4 (1-12)ÓëºËСÌå±íÃæµÄH3-H4ÇøÓò×÷Ó㬶øH4 (13-18)ÓëSUV420H1µÄ·ì϶½áºÏ£¬ÕâʹµÃH4ÑÓÉì·½Ïò·¢Éúµôת£¬H4 (19-24)ÉìÈëSUV420H1»îÐÔÖÐÐÄ¡£H4 N¶ËÐγɵÄÕâÖÖÌ×Ë÷×´½á¹¹½«H4K20׼ȷ¶¨Î»µ½SUV420H1´ß»¯ÖÐÐĵÄÊèˮͨµÀ£¬Ê¹¼×»ùתÒÆ·´Ó¦Íê³É£¨Í¼1. B£©£¬ÆÆ»µ¸Ã½á¹¹»òÕßÆäÖеÄÈÎÒ»µÄÏ໥×÷Óö¼½«Ó°ÏìSUV420H1µÄ¼×»ù»¯¹¦ÄÜ¡£½á¹¹ÏÔʾSUV420H1 KR loopÓëH2A.ZÌØÒì²Ð»ùD97/S98ÅþÁÚ£¨¶ÔÓ¦µÄH2A²Ð»ùΪN94/K95£©£¬KR loopÍ»±ä½µµÍSUV420H1¶ÔH2A.ZºËСÌ壬¶ø·ÇH2AºËСÌåµÄ¼×»ù»¯»îÐÔ¡£ÌåÄÚÑо¿±íÃ÷KR loopÍ»±äµ¼ÖÂϸ°ûH4K20me2ˮƽϽµ£¬ DNA¸´ÖÆÆðʼ¼õ»º£¬ÒÔ¼°Ï¸°ûÉú³¤È±ÏÝ¡£ÔçÆÚÑо¿Öз¢ÏÖH2A.Z D97/S98¿ÉÒÔ¾ö¶¨SUV420H1¶ÔH2A.ZºËСÌåµÄÓÅÏÈʶ±ð£¬Óë±¾Ñо¿µÄ½á¹ûÒ»Ö¡£

¡¡¡¡¸ÃÑо¿½ÒʾÁËSUV420H1ÓÅÏÈʶ±ðH2A.ZºËСÌå²¢´ß»¯²úÉúH4K20me2µÄ½á¹¹»ù´¡£¬²ûÊöÁËSUV420H1ͨ¹ýH2A.Zµ÷¿ØDNA¸´ÖÆÆðʼµÄ·Ö×Ó»úÀí£¬ÎªÒ©Îï°ÐÏòÉè¼ÆÓë¼²²¡ÖÎÁÆÌṩÁËÖØÒª»ù´¡2¡£H2A.Z×÷Ϊ¹Ø¼üµÄ×éµ°°×±äÌ弸ºõ²ÎÓëËùÓÐÒÔȾɫÖÊΪģ°åµÄÉúÎïѧ¹ý³Ì£¬ÖÜÕþ¿ÎÌâ×éÖÂÁ¦ÓÚÑо¿×éµ°°×°é»òȾɫÖÊÖØËܸ´ºÏÎï¶ÔH2A.Z±äÌå½øÐÐÓÅÏÈʶ±ðµÄ·Ö×Ó»úÖÆ£¬½ÒʾÁËH2A.ZÔÚºËСÌå×é×°¼°È¥×é×°¹ý³ÌµÄÑ¡ÔñÐÔʶ±ðģʽ¼°Æä¶ÔÓ¦µÄÉúÎïѧ¹¦ÄÜ3-8¡£È»¶ø£¬H2A.ZºËСÌå×÷ΪÕûÌå±»ÓÅÏÈʶ±ðµÄ·Ö×Ó»ù´¡£¬Æù½ñÉÐδ¼û±¨µÀ¡£±¾Ñо¿Ê״βûÃ÷ÁËH2A.ZºËСÌåµÄÓÅÏÈʶ±ð»úÀí£¬ÉÁ˶Ô×éµ°°×±äÌå½á¹¹ºÍ¹¦ÄܵÄÁ˽⡣

·âÃæͼ£ºÑо¿½ÒʾÁ˼׻ùתÒÆøSUV420H1ÓÅÏÈʶ±ðH2A.ZºËСÌå²¢½øÐÐH4K20me2ÐÞÊεĻúÖÆ¡£SUV420H1±»Ãè»æ³ÉÒ»¸ö¾«Á飬¾«ÁéÓÃħ°ôÔÚº¬ÓбäÌå×éµ°°×µÄºËСÌåÉϵãÁÁ±ê¼Ç£¬¸ÃÑо¿²ûÃ÷ÁËH2A.ZºÍSUV420H1ÔÚDNA¸´ÖÆÆðʼÖеÄ×÷Óá£

¡¡¡¡Öйú¿ÆѧԺÉúÎïÎïÀíÑо¿ËùÖÜÕþ¡¢Àî¹úºì¡¢ÖìƽÑо¿Ô±¼°ÉîÛÚÍåʵÑéÊÒÁúº£ÕäÑо¿Ô±Îª¹²Í¬Í¨Ñ¶×÷Õߣ¬ÉúÎïÎïÀíÑо¿ËùÖúÀíÑо¿Ô±»ÆÀò£¬²©Ê¿ºóÍõÓÐÍûºÍÁúº£ÕäÑо¿Ô±Îª±¾ÎĵĹ²Í¬µÚÒ»×÷Õß¡£¸ÃÑо¿»ñµÃ¹ú¼Ò×ÔÈ»¿Æѧ»ù½ðί¡¢±±¾©ÊпÆѧ¼¼ÊõίԱ»á¡¢Öйú¿ÆѧԺÏîÄ¿µÈÏîÄ¿×ÊÖú£¬ÉúÎïÎïÀíËùµ°°×ÖÊ¿Æѧƽ̨¡¢ÉúÎï³ÉÏñÖÐÐÄÌṩÁËÖØÒªÖ§³ÅºÍ±£ÕÏ¡£

¡¡¡¡ÎÄÕÂÁ´½Ó£º

¡¡¡¡https://www.cell.com/molecular-cell/fulltext/S1097-2765(23)00515-4

¡¡¡¡1. Long, H., Zhang, L., Lv, M., Wen, Z., Zhang, W., Chen, X., Zhang, P., Li, T., Chang, L., Jin, C., et al. (2020). H2A.Z facilitates licensing and activation of early replication origins. Nature 577, 576-581. 10.1038/s41586-019-1877-9.

¡¡¡¡2. Paulsen, B., Velasco, S., Kedaigle, A.J., Pigoni, M., Quadrato, G., Deo, A.J., Adiconis, X., Uzquiano, A., Sartore, R., Yang, S.M., et al. (2022). Autism genes converge on asynchronous development of shared neuron classes. Nature 602, 268-273. 10.1038/s41586-021-04358-6

¡¡¡¡3. Huang, Y., Dai, Y., and Zhou, Z. (2020). Mechanistic and structural insights into histone H2A-H2B chaperone in chromatin regulation. Biochem. J. 477, 3367-3386. 10.1042/BCJ20190852.

¡¡¡¡4. Dai L, Xiao X, Pan L, Shi L, Xu N, Zhang Z, Feng X, Ma L, Dou S, Wang P, Zhu B, Li W, Zhou Z. (2021) Recognition of the inherently unstable H2A nucleosome by Swc2 is a major determinant for unidirectional H2A.Z exchange. Cell Rep. 35(8):109183.

¡¡¡¡5. Huang Y, Sun L, Pierrakeas L, Dai L, Pan L, Luk E, Zhou Z. (2020) Role of a DEF/Y motif in histone H2A-H2B recognition and nucleosome editing. Proc Natl Acad Sci USA. 117(7): 3543-3550.

¡¡¡¡6. Wang Y, Liu S, Sun L, Xu N, Shan S, Wu F, Liang X, Huang Y, Luk E, Wu, C, Zhou Z. (2019) Structural insights into histone chaperone Chz1-mediated H2A.Z recognition and histone replacement. PLoS Biol. 17(5): e3000277.

¡¡¡¡7. Liang X, Shan S, Pan L, Zhao J,Ranjan A, Wang F, Zhang Z, Huang Y, Feng H, Wei D, Huang L, Liu X, Zhong Q, Lou J, Li G, Wu C, Zhou Z. (2016) Structural basis of H2A.Z recognition by SRCAP chromatin-remodeling subunit YL1. Nat Struct Mol Biol. 23(4):317-325.

¡¡¡¡8. Mao Z, Pan L, Wang W, Sun J, Shan S, Dong Q, Liang X, Dai L, Ding X, Chen S, Zhang Z, Zhu B, Zhou Z. (2014) Anp32e, a higher eukaryotic histone chaperone directs preferential recognition for H2A.Z. Cell Res. 24(4):389-399.


Ïà¹ØÐÂÎÅ
ÉúÎïͨ΢ÐŹ«ÖÚºÅ
΢ÐÅ
ÐÂÀË΢²©
  • ËÑË÷
  • ¹ú¼Ê
  • ¹úÄÚ
  • ÈËÎï
  • ²úÒµ
  • Èȵã
  • ¿ÆÆÕ
  • ¼±Æ¸Ö°Î»
  • ¸ßнְλ

ÖªÃûÆóÒµÕÐƸ

ÈȵãÅÅÐÐ

    ½ñÈÕ¶¯Ì¬ | È˲ÅÊг¡ | м¼ÊõרÀ¸ | Öйú¿ÆѧÈË | ÔÆչ̨ | BioHot | Ôƽ²ÌÃÖ±²¥ | »áÕ¹ÖÐÐÄ | ÌؼÛרÀ¸ | ¼¼Êõ¿ìѶ | Ãâ·ÑÊÔÓÃ

    °æȨËùÓÐ ÉúÎïͨ

    Copyright© eBiotrade.com, All Rights Reserved

    ÁªÏµÐÅÏ䣺

    ÔÁICP±¸09063491ºÅ