PNAS,EMBO等多篇文章报道迁移细胞中受体活性的空间调控

【字体: 时间:2020年07月17日 来源:生物通

编辑推荐:

  

  

细胞迁移广泛参与个体发育和损伤修复等多种生理病理过程。细胞如何极化并实现定向迁移是细胞和发育生物学中的重要问题。

清华大学PI欧光朔实验室在《美国科学院院报》杂志发表了题为“定向细胞迁移中受体活性被酪氨酸磷酸酶空间限制”(Spatial Confinement of Receptor Activity by Tyrosine Phosphatase During Directional Cell Migration)的文章,报道极性分布的酪氨酸磷酸酶限制受体在迁移细胞尾部的活性。

欧光朔实验室早期发现了保守的跨膜蛋白MIG-13/LRP12在神经细胞内决定了迁移方向(PNAS, 2013),阐明了该受体的胞内激活途径促进微丝细胞骨架在迁移细胞前导端的组装 (Dev Cell, 2016)。然而,MIG-13受体均匀分布在细胞膜上,如何将其在前导端不对称的活化而在迁移细胞尾部失活,知之甚少。

欧光朔实验室综合运用生化分析、遗传筛选和活体成像方法,发现MIG-13受体被酪氨酸激酶SRC-1激活,而被酪氨酸磷酸酶PTP-3失活,而内源的PTP-3蛋白特异的富集在迁移细胞的尾部,这样抑制了受体在迁移细胞尾部的活化。在抑制次生前导端的形成方面,欧光朔实验室于2020年7月3日在《细胞科学杂志》发表的文章阐明膜骨架(spectrin)提供的物理机制阻止分叉状微丝在细胞尾部的组装。

此外,这一研究组还在The EMBO Journal杂志发表了题为“纤毛内运输驱动蛋白的适度离轴运动调控感觉纤毛的结构和功能”( Optimal sidestepping of intraflagellar transport kinesins regulates structure and function of sensory cilia)的文章,报道分子马达在纤毛内的离轴运动和功能。

分子马达的离轴运动由Ron Vale在1987年在体外实验中发现的:动力蛋白沿微管的运动并不限制在特定的微管原丝上,而是在微管的13根原丝之间转换轨道。离轴运动本身指示力矩生成。后续的研究工作表明离轴运动在其他家族的分子马达中普遍发生,但是这些研究都是在体外系统完成的。离轴运动是否在体内发生,力矩生成有何生物学意义,一直是困扰细胞骨架研究领域多年的问题。

观察离轴运动需要成像系统能够在活体细胞内,以毫秒的拍摄速度,分辨微管直径24纳米区间内的侧向位移。欧光朔研究组对分子马达及货物进行26拷贝荧光蛋白的功能性标记,与北京大学陈良怡实验室合作,利用他们开发的海森-结构光照明显微术,在模式动物线虫的神经纤毛内实现了以5纳米的定位精度和3.4毫秒/幅的拍摄速度对由驱动蛋白介导的鞭毛内运输(IFT)进行跟踪观察,记录到驱动蛋白的离轴运动,表明力矩生成(图1)。结合基因组编辑、哑铃光镊试验系统以及电镜技术,欧光朔研究组发现两种驱动蛋白具有不同的力矩生成能力,协同运输货物分子,产生最适离轴运动。上调或下调驱动蛋白的离轴运动能力导致纤毛内双联体微管九次对称性的异常和动物感觉行为的缺失。这项研究提供了分子马达在活体动物内发生离轴运动的证据,阐明了力矩生成的生物学意义。

近期,欧光朔和陈良怡实验室还利用超分辨成像发现膜骨架在纤毛膜上展示出200纳米的周期性分布,为理解纤毛的生物力学支撑提供思路,该工作于2019年发表在《PLOS Biology》。

原文标题:

Spatial Confinement of Receptor Activity by Tyrosine Phosphatase During Directional Cell Migration

Optimal sidestepping of intraflagellar transport kinesins regulates structure and function of sensory cilia

 

相关新闻
生物通微信公众号
微信
新浪微博
  • 搜索
  • 国际
  • 国内
  • 人物
  • 产业
  • 热点
  • 科普
  • 急聘职位
  • 高薪职位

知名企业招聘

热点排行

    今日动态 | 人才市场 | 新技术专栏 | 中国科学人 | 云展台 | BioHot | 云讲堂直播 | 会展中心 | 特价专栏 | 技术快讯 | 免费试用

    版权所有 生物通

    Copyright© eBiotrade.com, All Rights Reserved

    联系信箱:

    粤ICP备09063491号