清华大学最新Nature文章

【字体: 时间:2016年06月20日 来源:清华大学

编辑推荐:

  2016年6月15日,清华大学生命科学学院颉伟研究组在《自然》以长文形式报道哺乳动物着床前胚胎染色质动态调控图谱。

  

2016年6月15日,清华大学生命科学学院颉伟研究组在《自然》以长文形式报道哺乳动物着床前胚胎染色质动态调控图谱。

在生命起始时期,精子和卵子的结合启动了一系列剧烈的染色体重编程事件。这种重编程能够帮助介导基因组转录的重新启动,塑造崭新的全能性胚胎,并为之后的胚胎发育和组织分化奠定基础。然而在这个过程中受精卵的染色体到底是如何动态变化的,染色质的重编程又是如何协助胚胎特异基因激活的一直是未解之谜。但由于早期胚胎材料的稀缺,目前的技术手段都难以施展该项研究。

开放染色质定位技术(ATAC-seq)和线粒体DNA去除技术(CARM)用于研究早期胚胎的开放染色质区域

基因转录的关键调控元件通常坐落在染色质开放区域。在前期斯坦福大学开发的少量细胞染色质开放区域定位技术(ATAC-seq)的基础上,清华大学颉伟组利用CRISPR基因编辑系统,成功克服了早期胚胎中大量母源线粒体基因组DNA对该技术的干扰,呈现了小鼠胚胎早期发育中开放染色质和基因调控元件的精确动态调控图谱。该研究发表在6月15日的《自然》杂志上。

从这一工作中,研究人员发现胚胎中来源于父母本的两套染色体在2细胞时期已经建立了相似的染色质开放区域。除了在基因启动子,这些区域还特异地集中在基因组的重复序列和基因转录的终止位置。这些发现暗示着在胚胎早期发育过程中存在着更为丰富的调控方式。另外,研究人员还通过开放染色质鉴定到可能的基因调控元件和相关的调节转录因子,并通过基因敲低实验证实了其中两个转录因子对胚胎中最早细胞分化的关键转录程序起重要的调控作用。最后,研究人员检测了胚胎基因组激活前的染色质状态,发现该时期的染色体不同于基因组激活后的胚胎和体细胞,可能处于一种整体更加松散的状态。综上所述,这项工作不仅发现了哺乳动物早期发育过程中染色体动态变化的特征以及可能的调控元件和转录因子,还揭示了在这个过程中染色质和转录调控元件不同于体细胞的特殊作用模式。

早期胚胎发育中合子基因组激活(ZGA)前后不同时期的染色质状态

清华大学生命学院颉伟研究员为本文通讯作者,清华大学生命学院PTN项目博士生吴婧怡和北京大学前沿交叉学科研究院CLS项目博士生黄波为本文共同第一作者。合作实验室包括清华大学生命学院杨雪瑞组,医学院那洁组,和新加坡科技研究局,新加坡临床科学研究院的徐丰组。课题得到了清华大学实验动物中心和生物医学测试中心基因测序平台的大力协助和支持。该研究获得了国家重点基础研究发展计划(973计划)、国家自然科学基金委优秀青年基金、中组部青年****基金以及生命科学联合中心的经费支持。

原文摘要:

The landscape of accessible chromatin in mammalian preimplantation embryos

In mammals, extensive chromatin reorganization is essential for reprogramming terminally committed gametes to a totipotent state during preimplantation development. However, the global chromatin landscape and its dynamics in this period remain unexplored. Here we report a genome-wide map of accessible chromatin in mouse preimplantation embryos using an improved assay for transposase-accessible chromatin with high throughput sequencing (ATAC-seq) approach with CRISPR/Cas9-assisted mitochondrial DNA depletion. We show that despite extensive parental asymmetry in DNA methylomes, the chromatin accessibility between the parental genomes is globally comparable after major zygotic genome activation (ZGA). Accessible chromatin in early embryos is widely shaped by transposable elements and overlaps extensively with putative cis-regulatory sequences. Unexpectedly, accessible chromatin is also found near the transcription end sites of active genes. By integrating the maps of cis-regulatory elements and single-cell transcriptomes, we construct the regulatory network of early development, which helps to identify the key modulators for lineage specification. Finally, we find that the activities of cis-regulatory elements and their associated open chromatin diminished before major ZGA. Surprisingly, we observed many loci showing non-canonical, large open chromatin domains over the entire transcribed units in minor ZGA, supporting the presence of an unusually permissive chromatin state. Together, these data reveal a unique spatiotemporal chromatin configuration that accompanies early mammalian development.

相关新闻
生物通微信公众号
微信
新浪微博
  • 搜索
  • 国际
  • 国内
  • 人物
  • 产业
  • 热点
  • 科普
  • 急聘职位
  • 高薪职位

知名企业招聘

热点排行

    今日动态 | 人才市场 | 新技术专栏 | 中国科学人 | 云展台 | BioHot | 云讲堂直播 | 会展中心 | 特价专栏 | 技术快讯 | 免费试用

    版权所有 生物通

    Copyright© eBiotrade.com, All Rights Reserved

    联系信箱:

    粤ICP备09063491号