科学家借助最新实时成像技术观察大脑工作过程

【字体: 时间:2014年05月06日 来源:中国科技网

编辑推荐:

  美国迈阿密大学(UM)科学家开发出一种新的实时成像技术,第一次让人们能直接看到活动物脑中蛋白质之间的相互作用。

  

人脑约有1000亿个神经元,神经元之间约有上万亿的突触连接,形成了迷宫般的网络连接。每个神经元包含有数百万的蛋白质,执行不同的功能。确切地说,是各种蛋白质之间的相互作用形成了复杂的脑网络,而人们对这些蛋白质间相互作用的研究还处于起步阶段。

最近,美国迈阿密大学(UM)科学家开发出一种新的实时成像技术,第一次让人们能直接看到活动物脑中蛋白质之间的相互作用。

蛋白质的“社交网络”

“蛋白质虽小,它们之间的相互作用形成了网络,就像人类的社交网络那样。”该项目首席研究员、迈阿密大学文理学院生物学教授阿基拉·奇巴解释说,“虽然网络的级别不一样,但在一个既定网络的基本单位之间,发生的行为都大致相同。”新技术能让科学家以可视化方式看到动物脑中蛋白质之间的相互作用,在不同的时间、不同的位置看到它的发展变化。这种互相作用就像有机生物之间的联系交往。

研究人员选择了果蝇胚胎作为实验的理想模型,因为果蝇的脑结构比较简单,而且透明,用一台荧光寿命成像显微镜(FLIM)就可能看到细胞的内部过程。观察结果对其它动物的脑,包括人脑也是适用的。

在实验中,研究人员给果蝇胚胎中的两种蛋白质做了荧光标记:一种是Rho GTPase Cdc42,也叫细胞分裂控制蛋白42,它是一种发育必需的、被广泛表达的蛋白质,由绿色荧光蛋白标记;另一种是Cdc42的信号搭档——调节蛋白WASp,也叫威斯科特—奥德里奇综合征蛋白,由红色荧光蛋白标记。目前科学家认为,这两种蛋白结合在一起,能在脑发育期间帮助神经元生长。而且人脑中也有这两种蛋白。

“交往”中的能量转移

以前人们在观察细胞内部时,需要对细胞进行化学或物理处理,这样很可能扰乱或杀死细胞,也就无法研究蛋白质在细胞天然环境中是怎样相互作用的。

研究小组利用一种叫做福斯特共振能量转移(FRET)的原理克服了这一难题。福斯特共振能量转移也叫荧光共振能量转移,是指在两个不同的荧光分子(基团)中,如果供体分子的发射光谱与受体分子的吸收光谱有一定的重叠,当这两个分子距离足够近时,就能观察到荧光能量由供体向受体转移的现象。


根据福斯特的描述,当两个小蛋白质靠得足够近时(通常是小于8纳米),就会发生这种能量转移,使供体分子的荧光寿命缩短,从3纳秒缩短到2.5纳秒。这种现象可作为两个蛋白质之间发生了物理作用的证据,也是一种分子信号,显示出活动物体内特殊蛋白之间在何时何地发生了相互作用。

研究人员发现,在果蝇胚胎的脑中形成新突触的同时同地,神经元内互相作用的蛋白质间也发生了能量共振转移现象。

“以往研究显示了Cdc42和WASp在试管中能直接结合在一起,而这是首次直接显示了两种蛋白质在脑中的相互作用。”奇巴说,“我们的最终目标是创造一种方法,能对脑中蛋白质间的相互作用进行系统地检查。现在基因组计划已经完成了,下一步就是要掌握那些基因编码蛋白在我们体内都干些什么。”

相关新闻
生物通微信公众号
微信
新浪微博
  • 搜索
  • 国际
  • 国内
  • 人物
  • 产业
  • 热点
  • 科普
  • 急聘职位
  • 高薪职位

知名企业招聘

热点排行

    今日动态 | 人才市场 | 新技术专栏 | 中国科学人 | 云展台 | BioHot | 云讲堂直播 | 会展中心 | 特价专栏 | 技术快讯 | 免费试用

    版权所有 生物通

    Copyright© eBiotrade.com, All Rights Reserved

    联系信箱:

    粤ICP备09063491号