
-
生物通官微
陪你抓住生命科技
跳动的脉搏
中科大连发Nature,Cell子刊文章解析分子作用机制
【字体: 大 中 小 】 时间:2013年07月04日 来源:生物通
编辑推荐:
中国科技大学的研究人员近期与其他研究组合作,接连在Nature Cell Biology,以及Immunity杂志上发表文章,解析了Omega-3脂肪酸抑制炎症和缓解2型糖尿病的新机制,以及癌细胞中的戊糖磷酸途径作用机制。此外中科大还与西双版纳热带植物园合作,从植物生理学角度解释了叶片面积为什么不能长得太大,以及巨大叶片植物在植物界很稀少的原因。
在第一篇文章中,研究人员发现Omega-3脂肪酸能够抑制NLRP3炎症小体的活化,减少炎症关键因子IL-1b的分泌。炎症小体能够介导IL-1等多种免疫介质的产生,对炎症反应的发生至关重要,并参与肿瘤、神经退行性疾病、代谢性疾病等多种人类炎症相关重大疾病的发生发展。
Omega-3脂肪酸不仅对智力发育非常关键,临床和动物实验都显示其对多种炎症相关疾病具有潜在的治疗和预防效果,但其抗炎机制并不清楚。此前的研究表明NLRP3炎症小体在高脂食物诱导的2型糖尿病发生中起关键作用,在这项研究中,研究人员进一步利用动物实验发现Omega-3脂肪酸可以通过抑制NLRP3炎症小体相关的炎症从而缓解高脂食物诱发的2型糖尿病。这些结果提示NLRP3炎症小体极其相关的免疫信号通路有可能成为潜在的对2型糖尿病进行干预的靶标,从而为设计2型糖尿病药物提供新的思路。
此外中国科技大学和宾夕法尼亚大学医学院合作,证实了TAp73支持了人类和小鼠肿瘤细胞的增殖。TAp73激活了戊糖磷酸途径(PPP)的限速酶——6-磷酸葡糖脱氢酶(glucose-6-phosphate dehydrogenase ,G6PD)的表达。
戊糖磷酸途径是葡萄糖在动物组织中降解代谢的重要途径之一。在其循环过程中,磷酸已糖先氧化脱羧形成磷酸戊糖及NADPH,磷酸戊糖又可重排转变为多种磷酸糖酯;NADPH则参与脂质等的合成。磷酸戊糖是核糖的来源,参与核苷酸的等合成。在这篇文章中,研究人员发现通过刺激G6PD, TAp73提高了戊糖磷酸途径的流量,促进了 NADPH和核糖生成,从而推动了大分子合成及活性氧簇(ROS)解毒。此外,研究人员证实通过增强G6PD表达,或是利用核苷结合一种ROS清除剂处理TAp73缺陷细胞,可使这种细胞的生长缺陷得以修复。
关于巨大叶片植物在植物界很稀少的原因,近期中科大的研究人员也进行了解析,他们发现由于叶片边缘部位导水功能和气体交换功能减低,导致叶片边缘散热受到抑制,露天生长的植株晴天下午叶片边缘附近比叶片中部温度高8.8摄氏度,导致一些叶片边缘出现高温灼伤而“干枯”现象;叶片边缘部位的生理功能受到抑制,限制了叶片面积的继续扩大。这就解释了巨叶植物叶片面积不会太大,以及这类植物在植物界很稀少的自然现象。
原文摘要:
Omega-3 Fatty Acids Prevent Inflammation and Metabolic Disorder through Inhibition of NLRP3 Inflammasome Activation
Omega-3 fatty acids (-3 FAs) have potential anti-inflammatory activity in a variety of inflammatory human diseases, but the mechanisms remain poorly understood. Here we show that stimulation of macrophages with -3 FAs, including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and other family members, abolished NLRP3 inflammasome activation and inhibited subsequent caspase-1 activation and IL-1β secretion. In addition, G protein-coupled receptor 120 (GPR120) and GPR40 and their downstream scaffold protein β-arrestin-2 were shown to be involved in inflammasome inhibition induced by -3 FAs. Importantly, -3 FAs also prevented NLRP3 inflammasome-dependent inflammation and metabolic disorder in a high-fat-diet-induced type 2 diabetes model. Our results reveal a mechanism through which -3 FAs repress inflammation and prevent inflammation-driven diseases and suggest the potential clinical use of -3 FAs in gout, autoinflammatory syndromes, or other NLRP3 inflammasome-driven inflammatory diseases.
TAp73 enhances the pentose phosphate pathway and supports cell proliferation
TAp73 is a structural homologue of the pre-eminent tumour suppressor p53. However, unlike p53, TAp73 is rarely mutated, and instead is frequently overexpressed in human tumours. It remains unclear whether TAp73 affords an advantage to tumour cells and if so, what the underlying mechanism is. Here we show that TAp73 supports the proliferation of human and mouse tumour cells. TAp73 activates the expression of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway (PPP). By stimulating G6PD, TAp73 increases PPP flux and directs glucose to the production of NADPH and ribose, for the synthesis of macromolecules and detoxification of reactive oxygen species (ROS). The growth defect of TAp73-deficient cells can be rescued by either enforced G6PD expression or the presence of nucleosides plus an ROS scavenger. These findings establish a critical role for TAp73 in regulating metabolism, and connect TAp73 and the PPP to oncogenic cell growth.