
-
生物通官微
陪你抓住生命科技
跳动的脉搏
艾滋病研究重要成果:找出休眠病毒
【字体: 大 中 小 】 时间:2012年09月13日 来源:生物通
编辑推荐:
格莱斯通研究院的科学家们设计了一种能精确追踪感染了艾滋病毒的细胞周期的新方法,令我们更深入的了解了艾滋病病毒HIV感染机制中这最令人费解的一步,也朝着克服这一机制迈进了一步。
生物通报道:格莱斯通研究院的科学家们设计了一种能精确追踪感染了艾滋病毒的细胞周期的新方法,令我们更深入的了解了艾滋病病毒HIV感染机制中这最令人费解的一步。
在刊登于Lab on a Chip杂志上的论文中,格拉德斯通研究院研究员Leor Weinberger公布了这一种设备,利用这一设备,可以精确定位和跟踪CD4 T细胞(艾滋病病毒靶向的白细胞类型)中的HIV,这项研究进展对于理解“HIV潜伏”状态尤为重要,这种状态下,病毒会在病人开始标准抗逆转录病毒治疗后进入休眠。
目前的抗逆转录病毒药物不会杀死艾滋病毒,它们只是将其隔离开来,这也就是说艾滋病毒感染者必须一生连续接受药物治疗,才能阻止艾滋病的发展。如果他们停止了药物,潜伏的病毒在几个星期之内就会被“唤醒”,并开始攻击人体免疫系统。
“艾滋病毒的潜伏期也许就是全球34亿艾滋病患者消灭这种疾病的最大障碍,”Weinberger说,“目前进行关于HIV潜伏的细胞和病毒研究的工具技术,无法研究非常罕见的细胞,这些细胞隐藏在潜伏HIV病毒中的比例是百万分之一。而我们的这项技术则提出了一个清晰的思路,能用于了解单个细胞内如何调控HIV潜伏延迟的,这是通过追踪传统上一直难以监测的个体细胞。”
单细胞时差显微技术(Singe-cell, time-lapse microscopy),是用于追踪某些病毒感染,和描绘药物抗生素耐药性的一种先进技术,这种技术无法用于追踪CD4 T细胞中艾滋病病毒感染周期,尤其是潜伏状态下的CD4 T细胞,这是因为这些细胞是出了名的会躲避,它们自发的到处移动,粘附和脱离它们的邻居,因此要实时监控到单个HIV感染病毒几乎是不可能的。
不过,Weinberger博士研究组设计了一个巧妙的系统,能将HIV感染的T细胞悬浮在一个微小的手指状通道中,以减少它们的移动或从周围邻居中脱离下来。
“首先,我们将T细胞放到了一个小孔中,让它们定位在底部——底部充满了营养,能让细胞良好无压生长,”文章第一作者Brandon Razooky说,“接下来,我们倾斜设备,使细胞滑入微小的手指状通道,最后我们将设备恢复成原来的直立位置,锁定每个通道内的约25个T细胞,使其‘冻结’住。”
这一设备相比于目前的方法有几个方面的优点。首先,单个细胞被固定,所以研究人员可以利用单细胞时差显微技术实时追踪它们,其次每个T细胞都被悬浮在营养液中,与其它细胞密切接触,从而为感染细胞提供了接近最优的条件,使其能在病毒整个生命周期中都保持活性。
“这意味着,我们现在可以分析单个细胞中一个HIV感染的全过程了——尤其是在关键的潜伏阶段,关于这一阶段,我们知道的太少了,”Weinberger博士说,“未来,我们计划扩大这一设备,使其包括更多的孔和通道,更大规模追踪艾滋病毒感染。我们希望能利用这些信息,解开HIV潜伏背后的机制奥秘。了解了这些,就能制定新治疗方案,找到潜伏的病毒,让它们完全脱离病人,一劳永逸。”
(生物通:张迪)
原文摘要:
Microwell Devices with Finger-like Channels for Long-Term Imaging of HIV-1 Expression Kinetics in Primary Human Lymphocytes
A major obstacle in the treatment of human immunodeficiency virus type 1 (HIV-1) is a sub-population of latently infected CD4+ T lymphocytes. The cellular and viral mechanisms regulating HIV-1 latency are not completely understood, and a promising technique for probing the regulation of HIV-1 latency is single-cell time-lapse microscopy. Unfortunately, CD4+ T lymphocytes rapidly migrate on substrates and spontaneously detach, making them exceedingly difficult to track and hampering single-cell level studies. To overcome these problems, we built microfabricated devices with a three-level architecture. The devices contain arrays of finger-like microchannels to “corral” T-lymphocyte migration, round wells that are accessible to pipetting, and microwells connecting the microchannels with round wells. T lymphocytes that are loaded into a well first settle into the microwells and then to microchannels by gravity. Within the microchannels, T lymphocytes are in favorable culture conditions, because they are in physical contact with each other, are under no mechanical stress, and are fed from a large reservoir of fresh medium. Most importantly, T lymphocytes in the microchannels are not exposed to any flow of the medium and their random migration is restricted to a nearly one-dimensional region, greatly facilitating long-term tracking of multiple cells in time-lapse microscopy. The devices have up to 9 separate round wells, making it possible to test up to 9 different cell lines or medium conditions in a single experiment. Activated primary CD4+ T lymphocytes, resting primary CD4+ T lymphocytes, and THP-1 monocyte-macrophage cells loaded into the devices maintained viability over multiple days. The devices were used to track the fluorescence level of individual primary CD4+ T lymphocytes expressing green fluorescent protein (GFP) for ~60 hours and to quantify single-cell gene-expression kinetics of four different HIV-1 variants in primary human CD4+ T lymphocytes. The kinetics of GFP expression from the lentiviruses in the primary CD4+ T lymphocytes agree with previous measurements of these lentiviral vectors in the immortalized Jurkat T lymphocyte cell line.