干细胞研究牛人Cell子刊发表突破性成果

【字体: 时间:2011年05月19日 来源:生物通

编辑推荐:

  来自奥地利科学院分子生物化学研究所(IMBA)的研究人员利用全基因组RNAi扫描的方法,识别出了620个调控果蝇成神经细胞自我更新与分化平衡的新基因,获得了成神经细胞自我更新与分化的功能性网络图。这对于进一步了解神经干细胞产生,及其发展的机制具有重要意义。这一研究成果公布在《Cell Stem Cell》杂志上。

  

生物通报道:来自奥地利科学院分子生物化学研究所(IMBA)的研究人员利用全基因组RNAi扫描的方法,识别出了620个调控果蝇成神经细胞自我更新与分化平衡的新基因,获得了成神经细胞自我更新与分化的功能性网络图。这对于进一步了解神经干细胞产生,及其发展的机制具有重要意义。这一研究成果公布在《Cell Stem Cell》杂志上。

领导这一研究的是奥地利科学院著名的神经干细胞专家Juergen A. Knoblich教授,这位科学家早年毕业于马普研究院,之后曾在华裔美国科学院院士伉俪:詹裕农(Yuh-Nung Jan) 叶公杼(Lily Yeh Jan)夫妻实验室从事研究工作。Knoblich教授研究组主要研究兴趣是不对称分子分裂的分子机制,他们利用果蝇了解蛋白如何在有丝分裂过程中决定不对称分裂的。近年来,其研究组又从干细胞角度分析神经发育。Knoblich教授曾获得多个奖项,也发表过多篇文章,在Nature,Science,Cell等顶级刊物也发表过许多成果,其中的一些文章都是这一领域的经典文章,比如他的一篇Cell文章就入选了Cell杂志引用次数最多的文章之一。

干细胞自我更新与分化之间的平衡十分重要,需要精密调控,才能确保组织的动态平衡,阻止肿瘤的发生。因此这方面的研究也倍受瞩目,许多大型实验室也进行了相关研究,比如之前哈佛医学院,波士顿儿童医院的研究人员就描述过胚胎干细胞自我更新与分化平衡维持机制。

在这篇文章中,研究人员利用全基因组RNAi扫描,识别出了维持果蝇成神经细胞自我更新与分化平衡的620个基因,并且一一找出了对应的表型,包括增殖,细胞大小,细胞形状,族系等方面。从中研究人员找到了一组对于自我更新十分重要的转录调控子,通过阶层式分群方法(hierarchical clustering),结合交叉数据,获得了成神经细胞自我更新与分化的功能性网络图。

这些研究数据说明了染色质重塑Brm复合物,剪接体,TRiC/CCT复合物的关键作用,也提出了可变剪接转录因子Lola和转录延长因子Ssrp和Barc在成神经细胞自我更新过程中的调控作用。而且通过在小鼠神经干细胞中分析这些基因的作用,也丰富了我们对于哺乳动物神经生物学的了解。

(生物通:张迪)

原文摘要:

Genome-Wide Analysis of Self-Renewal in Drosophila Neural Stem Cells by Transgenic RNAi
Ralph A. Neumüller, Constance Richter, Anja Fischer, Maria Novatchkova, Klaus G. Neumüller, Juergen A. Knoblich

Highlights
Genome-wide RNAi screen finds 620 genes regulating Drosophila neural stem cells
A set of transcriptional regulators is essential for neural stem cell self-renewal
Brm complex, spliceosome, and TRiC/CCT-complex regulate neural differentiation
Alternative splicing and transcriptional elongation are required in neural stem cells

Summary
The balance between stem cell self-renewal and differentiation is precisely controlled to ensure tissue homeostasis and prevent tumorigenesis. Here we use genome-wide transgenic RNAi to identify 620 genes potentially involved in controlling this balance in Drosophila neuroblasts. We quantify all phenotypes and derive measurements for proliferation, lineage, cell size, and cell shape. We identify a set of transcriptional regulators essential for self-renewal and use hierarchical clustering and integration with interaction data to create functional networks for the control of neuroblast self-renewal and differentiation. Our data identify key roles for the chromatin remodeling Brm complex, the spliceosome, and the TRiC/CCT-complex and show that the alternatively spliced transcription factor Lola and the transcriptional elongation factors Ssrp and Barc control self-renewal in neuroblast lineages. As our data are strongly enriched for genes highly expressed in murine neural stem cells, they are likely to provide valuable insights into mammalian stem cell biology as well.

相关新闻
生物通微信公众号
微信
新浪微博
  • 搜索
  • 国际
  • 国内
  • 人物
  • 产业
  • 热点
  • 科普
  • 急聘职位
  • 高薪职位

知名企业招聘

热点排行

    今日动态 | 人才市场 | 新技术专栏 | 中国科学人 | 云展台 | BioHot | 云讲堂直播 | 会展中心 | 特价专栏 | 技术快讯 | 免费试用

    版权所有 生物通

    Copyright© eBiotrade.com, All Rights Reserved

    联系信箱:

    粤ICP备09063491号