现代生物技术在油菜育种中的应用

【字体: 时间:2004年11月11日 来源:中国农业在线

编辑推荐:

  

  油菜是世界四大主要油料作物之一,属十字花科芸薹属,包括甘蓝型油菜、芥菜型油菜、白菜型油菜3个栽培种。多年来,油菜生产国政府和科学工作者均十分重视油菜的生产和科研工作。从70年代开始发展起来的现代生物技术则给动植物品种改良带来了一场革命,把育种技术从宏观水平提高到微观水平,以植物组织(细胞)培养技术、重组DNA技术、分子标记技术为主体的现代生物技术已成为作物品种改良的前导技术。本文就生物技术在油菜育种中的应用加以综述。

1、植物组织培养

植物组织培养是指植物的离体细胞、组织或器官在人工培养基上的生长、维持或分化。组织培养的全部实践都是以细胞的全能性和体细胞有丝分裂的均等性为依据的。植物组织培养根据外植体来源和培养目标的不同分为愈伤组织培养,器官培养,分生组织培养,细胞培养和原生质体培养及融合等类型。组织培养作为一种新的手段,对植物改良有重要价值。

1.1单倍体育种技术 控制和改变植物染色体倍数来达到选育优良品种的技术,其中最突出的是单倍体育种。以花药为外植体组织培养获得单倍体个体,无论花粉来源于纯合体还是杂合体,经加倍后即纯化,为加速育种进程提供了前所未有的机会。目前,花药培养已在200多个植物种中获得成功,中外学者对影响花药培养的内外因素进行了广泛深入的研究,运用花药培养已经获得新品种的重要作物有水稻、小麦和大麦等,通过花药培养也获得了一批纯合玉米自交系。甘蓝型油菜通过花药均获得单倍体植株,进而加倍,已成为常规育种的重要辅助技术。

1.2通过胚培养克服远缘杂交不亲和性和杂种后代的自交不亲和性,拓宽种质范围 远缘杂交是植物育种的二个重要方面。通过远缘杂交,可以获得品种间杂交难以得到的变异类型。通过栽培种和野生种间的杂交,还可以从野生种那里获得如抗病性和对恶劣环境适应性等经济性状。但远缘杂交也存在许多困难。其中之一是杂种胚乳不能正常发育,杂种胚也会因饥饿死亡。在芸薹属、萝卜属等作物上,远缘杂交均有成功的报道,我国也有不少成功的例子,如甘蓝型油菜与兰花籽、诸葛菜的种属间杂交等。

1.3原生质体培养及融合技术 植物原生质体是指用特殊方法脱去细胞壁的、裸露的、有生活力的原生质团。这种裸露细胞在适当的外界条件下,还可以形成细胞壁,进行有丝分裂,形成愈伤组织和诱发再生植株,因而仍然具有细胞的全能性。原生质体培养就是指以这种裸露细胞作为外植体所进行的离体培养。原生质培养的主要目的是实现远缘物种的体细胞杂交和外源染色体、DNA或细胞器的导入,以这种生物学手段对植物进行改良。在植物育种上应用最多而且期望最高的是体细胞杂交。

体细胞杂交又称原生质体融合,是指2种原生质体间的杂交。它不是雌雄配子间的结合,而是具有完整遗传物质的体细胞之间的融合。因此,杂交的产物一异型核细胞或异核体中将包含有双亲体细胞中染色体数的总和及全部细胞质。当然,由于自然的原因,由杂种细胞再生成的杂种植株内,染色体数目和细胞器的组成以及其它细胞质成分还有不同程度的变化,因而大大增加了后代的变异。此外,由于人为的控制,也会使杂种细胞内的遗传物质发生某种变化,例如体细胞杂交过程中有意识地去除(或杀死)某一亲本的细胞核,得到的将是具有l个亲本细胞核和2个亲本细胞质的杂种细胞,通常把这种细胞称为胞质杂种。

关于原生质体融合技术,自Carlson(1972)获得第l个烟草体细胞杂种以来,到80年代中期报道有15个种内组合,38个种间组合,13个属间组合的体细胞杂种植株。大多数属于茄科植物,十字花科只有少数。据不完全统计,到90年代,通过体细胞杂交技术又增添了再生植株的种内杂种14个,种间62个,属间47个,并有2个科间组合的胞质杂种分化出植株。油菜的原生质体融合在70年代也开始了尝试,如拟南芥菜和白菜型油菜原生质体融合获得了自然界不存在的属间体细胞杂种一拟南芥油菜。Banneret等通过种间杂交将Ogura在萝卜中发现的雄性不育性胞质转移到甘蓝和甘蓝型油菜中。Pelletier等通过体细胞融合的方法产生雄性不育的甘蓝型油菜胞质杂种,从而得到优良的没有缺点的雄性不育系。Heyn通过油菜雄性不育和Raphanobrassica(萝卜×甘蓝型油菜杂交的双二倍体)种间杂交,将恢复基因从萝卜导入到甘蓝型油菜中,Pelletier等选择得到了具有改良的最佳胞质杂种组胞质全恢复植株,这类种质具有一个显性恢复等位的基因,近年来,通过不断改良,萝卜胞质三系已接近生产和利用阶段。

1.4诱发与筛选遗传变异,转移创造抗逆、抗药、抗病性突变 因为组织培养改变了细胞分裂的正常周期,使异染色质DNA复制更加延迟,从而使带有异染色质区的染色体在细胞分裂过程中发生断裂、引起染色体畸变,诱发转座因子。因此,在组织培养条件下,无论有无诱变剂存在,都有较高的突变率,再生植株中存在着丰富的遗传变异。由于组织培养的环境条件可以严格地加以控制,我们就有可能模拟出各种自然灾害条件,如培养基中NaCl的浓度、pH值、添加对某些作物危害最大的流行病菌毒素或者最有效的除莠剂等,组成各种特异性选择培养基,从而筛选出具有对特殊自然灾害抗性、抗药性或抗病性细胞系或再生株,为作物改良提供宝贵的基因来源或种质资源。

2、植物基因工程技术

基因工程即重组DNA技术,或分子克隆。是一种外科手术式的遗传操作。它不是通过一般传统的有性杂交方法,而是采取类似于工程建设的方法,按照预先设计的蓝图,借助于实验室的技术,将某种生物的基因或基因组转移到另一种生物中去,使后者定向地获得新的遗传性状,成为新的类型。用重组DNA技术实现对某一植物的改造,大体上要经过以下5个步骤:①从某种特定的生物中获取外源DNA或目的基因; ②从原核生物中获取目的基因的载体并进行改造;③用限制性内切酶将载体切开,用连接酶把目的基因连接到载体上,获得DNA重组体;④以欲改造的植株作受体,使重组DNA进入受体细胞,即实现外源DNA的转化; ⑤被转化的受体细胞再生完整植株,外源DNA在受体内表达。

利用基因工程技术可以改良作物蛋白质成分,提高作物中必需的氨基酸含量,脂肪酸组成,培养抗病毒、抗虫及抗逆境植株,在当前农业生产中已经显示出巨大的经济效益。因此,倍受重视,已经成为研究人员多,投资大,进展快并极富活力的生物技术产业,并展示出在未来农业生产中的诱人前景,是我国"863"计划的重点项目。

近年来,油菜基因工程研究已蓬勃开展,据不完全统计,1985-1991年,十字花科基因工程研究共发表论文23篇,其中油菜占13篇。在加拿大,1992年全国转基因植物试验共205个,其中油菜164个。在这164个试验中,抗除草剂试验159个,抗病试验l个,改变蛋白质试验1个,提高含油量的试验l个。

2.1抗除草剂 将除草剂耐性引入农作物是增加对除草剂选择性及完全性的一条新途径。在油菜基因工程中,对抗草甘磷的EPSP合成酶(5-Enolpyruvylshikimate-3-phosphatesynthase)突变基因的导入取得成效。草甘磷(Glyphosate)是一种非选择性的广谱除草剂,它是通过抑制EPSP合成酶的活性而阻断芳香族氨基酸的合成,最终导致受试植物死亡。

目前已从E·Coli分离出一个突变株,它含有抗草甘磷的EPSP合成酶的突变基因,将其引入到作物中,当使用草甘磷时,作物不受损害。由于草甘磷无毒,无残留,易分解,不污染环境,因此,人们对抗草甘磷的EPSP合成酶基因的遗传操作十分重视。目前加拿大已有2个抗草甘磷的转基因油菜品系,多加1992一1994年加拿大油菜品种联合试验,这些品系在产量方面与当前品种相当,但品质和抗性加强。

2.2抗虫 培养抗虫植物是基因工程的一个重要应用领域,不仅对改良作物具有重要意义,同时对种子工业和农业化学也有不可低估的影响。在抗虫方面,主要是通过克隆编码。将苏云金芽孢杆菌(Bocillas thuringiensis)即B·T·的毒素蛋白基因(也称杀虫晶体蛋白基因)转移到植物细胞中,从而获得抗虫的转基因植株。目前已将其转入到烟草、番茄、棉花中。在姜芸薹抗虫基因工程中,已将苏云金杆菌毒蛋白基因转入油菜、花椰菜、花茎甘蓝,结球甘蓝中。

利用一些蛋白酶抑制剂基因,也可获得抗虫植株。如英国已克服了豇豆的胰蛋白酶抑制剂基因,将该基因转入植株,就产生抑制剂,能破坏虫体胰蛋白酶的活性。害虫食转基因植株后,便因消化不良而死亡。

2.3抗病性 病毒对植物的危害是农业生产上损失最大的病害之一,目前普遍采用的控制和避杀传毒昆虫、选育带有抗病基因的品种、生产脱毒苗以及接种病态的弱毒株系以达到交叉保护的作用等常规方法,均或多或少存在限制因素,导致效果欠佳或产生相反的效果。利用植物工程防治病毒的方法有以下几种。

①病毒外壳蛋白基因的导入:即利用导入的外壳蛋白基因形成交叉保护,防止或减轻病毒危害,已经获得的抗病毒转基因蔬菜作物有番茄、马铃薯、辣椒等。美国于1986年获得了转化TMV外壳蛋白基因的番茄植株,在大田试验条件下,有TMV外壳蛋白的番茄接种TMV后只有5%的植株发病,产量不减,而对照植株发病率达99%,减产26%~35%。已经成功转化的病毒外壳蛋白基因还有马铃薯X病毒(PVX)、马铃薯Y病毒(PVY)、黄瓜花叶病毒(CMV)和大豆花叶病毒(SMV)等。

②病毒卫星RNA的cRNA导入:1986年英国科学家把CMV的卫星RNA转成cDNA。再将它转进植物中去,第l次获得了抗CMV的工程植株。我国学者赵淑珍也获得了类似的转基因植株。

③病毒的反义RNA:日本科学家1993年已将CMV反义RNA基因导入到辣椒中并探索反义技术在抗病毒育种上的应用价值。其抗病机理就是将病毒的基因组反向结合在启动子上,转入植株,使转基因植株编码出反义基因的RNA,当外源RNA病毒侵入时,反义RNA便与之形成互补,构成双链结构,从而阻止病毒复制,减轻病毒危害。  

除上述3种方法外,还可以利用植物自己编码的抗病基因以及利用病毒上的其它基因等方法进行抗病品种的育种。

2.4品质改良 据Davies(1992)报道,在脂肪酸代谢过程中催化不饱和反应的酶为质体中18碳酰基载体蛋白脱氢酶。将其反义RNA基因导入油菜和芜菁。结果使转基因植物中饱和的18碳烷酸含量由2%提高到40%,增加20倍。但油脂含量仅为正常种子的一半。另据Kuntzon等报道,由加州月桂树分离得到的月桂酸酰基载体蛋白硫酯酶基因导入油菜中,使转基因油菜种子油中月桂酸(13碳饱和脂肪酸)含量高达50%。此外,据Krebbeors等(1991)、Stayton等(1991)、Altenbach等(1992)报道,通过根瘤农杆苗导入拟南芥和豌豆2S白蛋白基因和巴西坚果富含甲硫氨酸种子蛋白基因,使转基因油菜蛋白质总量成倍增加,甲硫氨酸和赖氨酸含量显著提高。这些事实都说明,提高基因工程改良种子中油脂和蛋白质组成是可能的。

2.5自交不亲和性的转变 自交不亲和性(SI)有孢子体和配子体2个主要系统,孢子体不亲和系统是不亲和花粉管在柱头表面生长停滞,配子体不亲和系统是不亲和花粉长出花粉管,花粉管生长停滞一般发生在进入柱头之后。甘蓝(Brassica oleracea)仅孢子体系统,其S一座位(S-locus)含有2个多态基因(Polymorphic genes)。即S一座位糖蛋白(SLG)和S一受体激酶(SPK)基因,两者是分离的,相隔约200kb。SRK基因中一个类似于SLG的结构区域,一个假定的穿膜结构区域和一个激酶结构区域。

甘蓝型油菜(Brassica napus)属于自交亲和性的植物,将其SLG基因转入自交不亲和性的甘蓝(Brassica oleracea)后,甘蓝即变成自交亲和株。这可能是甘蓝的SLG基因在受到有益抑制,引起柱头发生变化造成。

2.6育性 决定植物育性的TA29基因及转基因杂种油菜已取得突破性进展。TA29核酸酶基因最先是由Goldberg R·B·在烟草花器中发现的。这一基因转至油菜等作物中可以表达。据Marlani C·等研究,外源的TA29核酸酶基因在绒毡层中专一表达时,致使绒毡层细胞败育,而绒毡层细胞主要是为花粉粒发育提高营养的,败育后导致花粉发育不正常而表现为雄性不育。为了达到育性的恢复,Marlani C·又设计了用绒毡层专一启动子与TA29核酸抑制物基因构成融合基因导入植物,与上述导入TA29核酸酶基因后得到的雄性不育株杂交,在F1代中,由于TA29核酸抑制物基因表达,抑制了TA29核酸酶的活性,从而恢复可育。

为了使基因工程雄性不育可保护下去,Mariani C·又设计了将TA29核酸酶基因与bar基因(编码抗除草剂磷化黄酮的PPT乙酰转移酶)串联在一起的转化植物。这一转基因雄性不育植物当与正常油菜杂交时产生的后代即可用除草剂处理,选择性杀死可育株而保留不育株。现在比利时PGS公司(1993)已利用这一套材料生产杂种。

3、分子标记

分子标记(Molecular marker)是指与特定基因或标记连锁的一段经过扩增并可检测出的DNA序列。经典的分子标记RFLP(限制性片段长度多态性)至今仅l0多年的历史,但人们利用它已构建了数以百计的植物分子标记遗传连锁图。后来发展了基于PCR技术的各种分子标记,如SSR、RAPD、SCAR、AFLP等等。这些分子标记各有千秋,已有许多专文予以介绍。这里仅就分子标记在辅助作物育种中的功用概述之。

从本质上看,分子标记与构建经典细胞遗传连锁图的形态学标记和生化标记是一致的。所不同的是与后两者相比较,前者直接反映了DNA序列上的变异,并在数量上具有无限性,因此在辅助作物育种上有更广泛的用途。

3.1作物品种资源的DNA指纹分析 这种分析不仅将导致对遗传资源本质的评价、归类和利用,还将在品种的纯度测定和品种知识产权保护上发挥作用。

3.2标记重要基因 有些重要基因,如抗病基因检测不仅很费时,还受植物发育阶段的限制。利用与这些基因紧密连锁的分子标记,无疑有助于在育种过程中对特定基因型的选择。如果利用分子标记与目的基因之间的连做关系,构建出类似于细胞遗传图的分子标记遗传连锁图,那么分子标记还将有下述用途:

①辅助回交育种 回交育种中需要解决的问题之一是连锁累赘。利用分子标记可能检测到在目的基因两侧各发生了一次交换的个体,因而可以仅经过二、三次回交,便可达到常规回交育种中回交上10次也达不到的目的。

②全基因组选择 借助于饱和的分子标记连锁图,可以对各预选单株的整个基因组组成进行分析。在此基础上选择出不仅具有多个目标性状,且遗传基础最为理想的个体。

③杂种优势分析和预测 杂种优势来源于DNA的杂合性,分子标记第一次提供了准确判断杂交组合DNA杂合性的手段,从而也第一次有可能从DNA水平预测杂种优势。利用分子标记,还可人工培育出在DNA序列的重要片段可能高度杂合的亲本,从而配制出超优势的F1组合。

4、结 语

处于世纪之交的现代植物育种学是以组织培养、分子克隆和分子标记3大生物技术同育种实践紧密渗透为特征的。组织培养技术已日趋成熟,成为油菜常规育种的重要辅助手段,随着基因图谱的饱和度日益提高,以及RFLP标记图谱,基于PCR标记图谱、物理图谱间对应关系的建立,育种家在不久的将来有望利用分子标记来提高选择效率,更快地培育出更好的品种。基因工程除在抗除草剂、抗病、抗虫等方面发挥巨大的作用外,在创造新的雄性不育材料、充分利用杂种优势方面亦展现出诱人的前景。
相关新闻
生物通微信公众号
微信
新浪微博
  • 搜索
  • 国际
  • 国内
  • 人物
  • 产业
  • 热点
  • 科普
  • 急聘职位
  • 高薪职位

知名企业招聘

热点排行

    今日动态 | 人才市场 | 新技术专栏 | 中国科学人 | 云展台 | BioHot | 云讲堂直播 | 会展中心 | 特价专栏 | 技术快讯 | 免费试用

    版权所有 生物通

    Copyright© eBiotrade.com, All Rights Reserved

    联系信箱:

    粤ICP备09063491号