吸烟者基因分型与吸烟行为的相互关系

Peter Bauer^{1*}, Susan Collins², and Anil Batra²

¹Department of Medical Genetics, University of T ü bingen, Germany; ²Clinic for Psychiatry and Psychotherapy, University of Tübingen, Germany

*联系作者: peter.bauer@med.uni-tuebingen.de

简介

吸烟行为同时受遗传和环境因素影响。此外,初始吸烟者和较长烟龄者之间至少存在 50%的遗传可能性。目前大量的研究都试图摸清,过去认为与吸烟及成瘾相关联的神经生物学通路(如中央多巴胺能、5-羟色胺能及烟碱能通路)中多种遗传学标记分子与吸烟行为的不同表现间都有什么关系。为了研究未来的遗传性分析的可行性,我们利用LightCycler[®] 480系统的HybProbe杂交探针法对288 位吸烟成瘾者的 14 个 SNP 位点进行基因分型。

Table 1: SNP frequency and associated smoking intensity.					
SNPs	Frequency	Percentage	Smoking intensity		
			M(SD)		
ANKK 1(N=270)					
GG	179	66.3%	23.37(8.94)		
GA	77	28.5%	23.04(8.01)		
AA	14	5.2%	25.21(8.45)		
DRD 3(n=271)					
AA	138	50.9%	23.52(7.87)		
AG	109	40.2%	23.65(9.22)		
GG	24	8.9%	22.08(10.83)		
DRD 4(n=270)					
GG	246	91.1%	23.59(8.72)		
GA	23	8.5%	22.32(8.66)		
AAa	1	0.4%			
COMT (n=268)					
AA	63	23.5%	24.18(9.45)		
Other genotypes	205	76.5%	23.27(8.49)		
SLR6A3 (n=264)				
CC	262	99.2%	23.54(8.73)		
CTb	2	0.8%			
MAOA (n=269)					
AA	45	16.7%	24.66(11.36)		
GA	70	26.0%	21.69(7.74)		
GG	154	57.2%	23.93(8.21)		

材料与方法

血液样本来自272名志愿者,自愿提供用于分析涉及尼古丁上瘾的靶基因样本。DNA的分离采用手动高盐法(236份样本)或MagNA Pure Compact全自动快速核

酸纯化系统和 Nucleic Acid Isolation Kit I(36 份样本)。

用于分析14个不同的SNP位点的引物和HybProbe探 针(Figure 1)由Tib Molbiol(柏林)设计,使用BiRobot 8000自动化平台完成384孔板上的LightCycler[®]480 Master的分装和加样。PCR反应体系请详见参考文献 【1】,每个反应使用10pmol引物和3pmol杂交探针(受 体和供体),PCR的反应体积为10µl,扩增55个循环并 且利用touchdown PCR程序设计(逐步降低退火温度从 65℃到第十个循环的55℃,每个循环降低1℃)。

优化基因分型检测

通过 touchdown PCR 程序以及不对称扩增(优先扩 增与受体和供体探针互补的单链)从14个基因分型测定 中得到12个强信号结果(Figure 1),其中的2个 SNP位 点的检测(COMT 和 MAOA),还需要用其他方法进行验 证,以得到可靠的分型结果。

COMTV158M 多态性

标准法对于错配(低熔解温度)和非错配(高熔解 温度)等位基因显示了很不平衡的熔解峰值(Figure 2)。 改变引物和探针的浓度已经不能改善这种模式。在这种 情况下,我们只能区分纯合子基因型 BB(紫色)和所 有其他基因型(AA和AB,黄色和蓝色样本)。最后,我 们决定把未标记的正向引物向上游移动50个碱基,并通 过这一简单的改动,大大改善了的基因分型检测结果。 重复实验后我们得到268份可靠的基因型结果(其中1.5 %由于技术性操作失败)。

MAOA 多态性

在这个例子中,同样地,高温熔解峰的熔解曲线呈现 多种形态,因此并不能得到精确的基因分型(Figure 2)。 偏斜的熔解图并不能可靠区分AB基因型(黄色曲线)和 BB基因型(红色曲线)。在 20 μl 的反应体系中,我们

(SLC6A4, HTR2A, RAPGEF) 被错误地标注在公共数据库中, 虽然 PCR 结果很好,但并没有 杂合型。MAOA和COMT的基 因分型要通过上移未标记探针 和加倍反应体积从10 μ1到20 μ1 得以改进。

在14个SNP位点中11个 SNP位点是多态性的。对于这 11个SNP位点,基因型数据并 没有显著偏离哈代-温伯格平 衡,从而证明基因分型系统的 高精确性。此外,我们利用一 个单独的限制性片段长度多态 性方法验证了ANKK1基因的 SNP(RFLP数据未显示),得 到完全相同的基因型。在这项 研究中 LightCycler[®]480 Instrument.基因分型的成功率 为95%以上(见Table 1), LightCycler[®]480 仪器在此发挥 了很好的作用。

结论

我们的基因分型资料表明, 利用 LightCycler[®] 480 仪器与 HybProbes对多巴胺系统进行遗 传变异分析是可行的。这一新 的高通量技术,使我们得到更 多可靠的基因分型结果,从而 能更准确地分析基因变异与吸 烟行为的关系,进一步的研究 将在临床相关协会报道。

会得到较好的熔解曲线图,因此两倍PCR反应体积的再次基因分型法也是一种技术上的处理方法。同样,我们也能提供MAOA可靠的基因分型结果(1.9%技术性操作失败可能来源于不好的DNA质量)。

结果与讨论

我们对于272名吸烟者的14个SNP位点进行分析, 系统失败率只占百分之三以下。其中的3个SNP位点

参考文献

1. Walter et al. (2006) Biochemica 2:8-11

产品名称	包装规格	序列号
MagNA Pure Compact Instrument	1 instrument	03 731 146 001
MagNA Pure Compact	1 kit (32 isoations)	03 730 964 001
Nucleic Acid Isolation kit l		
LightCycler® 480 Instrument	1 instrument (96 well)	04 640 268 001
	1 instrument (384 well)	04 545 885 001
LightCycler® 480 Genotyping Master	4*384 µl (5*conc.)	04 707 524 001