基于主动学习的高性能可降解薄膜设计:突破与创新

《Nexus》:Active Learning for Advanced Biodegradable Film Design

【字体: 时间:2025年03月24日 来源:Nexus

编辑推荐:

  为解决传统塑料的环境问题及羧甲基纤维素(CMC)薄膜的性能缺陷,研究人员开展相关研究,建立数据驱动平台优化薄膜性能,意义重大。

濠电姷鏁搁崑鐐哄垂閸洖绠插ù锝呭濞存牠鏌曟繛褍妫楀皬闂備焦鏋奸弲娑㈠疮娴兼潙鐓樼€广儱顦伴悡鏇㈡煙娴煎瓨娑ф鐐瘁缚缁辨帡鎮╅崫鍕優缂備浇椴哥敮妤€顕ラ崟顓涘亾閿濆簼绨藉ù鐘虫綑椤啴濡堕崱妤冾儌闂佸摜濮甸悧鐘荤嵁閸℃稑绀冩い鏃囧亹椤︽澘顪冮妶鍛婵☆偅鐩畷鎰版倷閻戞ǚ鎷洪梺闈╁瘜閸欌偓婵$偓鎮傞弻娑樷枎韫囨洜顔婂┑鈥冲级閸旀洟鍩為幋鐘亾閿濆骸浜滃ù鐘虫そ濮婅櫣绱掑Ο鑽ゅ弳闂佸湱鈷堥崑濠囧春濞戙垹鍐€妞ゆ挾鍟块幏鍝勵渻閵堝棗濮х紒韫矙瀹曨偄煤椤忓懐鍘遍梺鎸庣箓鐎氼剙鐣甸崱妯诲弿濠电姴鍊归崑銉р偓瑙勬礋娴滆泛顕i幘顔藉亹闁告瑥顦伴悵锕傛⒒娴e憡鎯堟い锔诲亰瀵彃饪伴崼鐔蜂画閻熸粍妫冮獮鍡樼瑹閳ь剟鐛幒鎳虫棃鍩€椤掆偓铻炴慨妞诲亾闁哄本鐩俊鐑藉閳╁啰褰囬柣鐔哥矋濠㈡ê岣块敓鐘茶摕闁靛ǹ鍎Σ鍫熶繆椤栨氨浠㈡い蹇e幖椤啴濡堕崒娑欐闂佹悶鍎洪悡鍫濐潖閸ф鈷戦梺顐ゅ仜閼活垱鏅堕幘顔界厵鐎规洖娲ら弸鎴炵箾閻撳海绠诲┑鈩冩倐閺佸倿鏌ㄩ姘濡炪倖娲嶉崑鎾绘煛鐏炲墽鈽夐摶锝夋煟閹惧啿顒㈤柣搴ㄧ畺濮婃椽宕崟闈涘壈闂佸摜鍠愰幐鍐差嚕椤愩埄鍚嬮柛娑卞灡濞堟洟姊洪崨濠傚闁稿骸鍟块埢鎾诲蓟閵夛腹鎷虹紓鍌欑劍閿氬┑顔碱樀閺岀喖鎼归锝呯3閻庤娲滈弫濠氥€佸璺虹劦妞ゆ帒瀚弸浣衡偓骞垮劚椤︿即寮查幖浣圭叆闁绘洖鍊圭€氾拷闂傚倷娴囧畷鍨叏閹惰姤鈷旂€广儱顦崹鍌炴煢濡尨绱氶柨婵嗩槸缁€鍕叏濠垫挾顔嘓ot缂傚倸鍊搁崐宄邦渻閹烘梻鐭氶柛顐f礀閸ㄥ倻鐥鐐村櫡濞存粌缍婇弻娑㈠Ψ椤旂厧顫╅梺绋胯閸旀垿寮婚敐澶婃闁圭ǹ楠搁弳鍫ユ⒑鐠囨彃鍤遍柟鍑ゆ嫹
  

研究背景:塑料困境与可降解材料的探索

在当今时代,塑料的广泛应用就像一把双刃剑,给人们的生活带来便利的同时,也引发了严峻的环境问题。据联合国环境规划署(UNEP)2022 年报告显示,全球塑料年产量已飙升至 4000 万吨,其中包装领域的塑料使用量约占总量的 40%。这些塑料垃圾在自然环境中难以降解,不仅对生态系统造成了严重破坏,还带来了潜在的健康风险,因此,寻找可替代传统塑料的环保材料迫在眉睫。
生物聚合物作为一种极具潜力的替代品,受到了科研人员的广泛关注。其中,纤维素是一种来源丰富的可再生生物聚合物,由其衍生物制成的可降解薄膜具有低含水量、良好的氧气和芳香化合物阻隔性能。羧甲基纤维素(CMC)作为纤维素的常见衍生物,凭借其出色的成膜性、与其他物质的良好兼容性以及在食品等行业的安全性,成为了研究的热点。然而,CMC 薄膜存在脆性大、亲水性高的缺点,限制了其在食品包装等领域的应用。
为了克服这些问题,研究人员尝试了多种方法对 CMC 薄膜进行改性。例如,添加天然聚合物,如木质素、淀粉和果胶等,但这些方法往往存在机械性能提升有限、成本较高等问题。此外,传统的材料优化方法依赖于大量的实验探索,不仅成本高昂,而且难以全面考虑多个性能指标的优化。
在这样的背景下,将机器学习和优化技术引入材料设计领域,为解决这些难题提供了新的思路。清华大学的研究人员开展了一项极具创新性的研究,旨在通过整合材料科学、机器学习和优化技术,提升 CMC 薄膜的性能,开发出高性能、可持续的可降解薄膜。该研究成果发表在《Nexus》杂志上,为环保材料的发展带来了新的突破。

研究方法:创新融合,开启新篇

研究人员采用了一系列先进的技术方法来开展这项研究。首先,他们选定了八个关键实验变量,包括 CMC、玉米淀粉、木薯淀粉、尿素溶液、NaOH 溶液、氨溶液、甘油的质量以及温度。
在实验设计方面,研究人员构建了一个代理模型来预测薄膜性能指标,以加速实验设计过程。他们运用高斯过程回归(GPR),在贝叶斯主动学习(AL)框架内,高效搜索最优实验条件。实验流程包括初始采样,通过约束均匀采样和单变量采样生成 110 个实验条件;实验执行,依据采样条件进行实验并测量关键性能指标;代理模型训练,利用初始实验数据训练 GPR 模型;迭代优化,通过贝叶斯多目标优化(MOO)算法对模型进行迭代更新,直至模型的预测精度满足预设标准。

研究结果:性能飞跃,成果显著

  1. 数据集特征:通过约束均匀采样,研究人员获得了覆盖整个参数空间的样本点,确保了实验条件的合理性。对初始数据集的分析发现,接触角、拉伸强度(TS)和断裂伸长率(EB)近似高斯分布,表明采样具有代表性。
  2. 实验迭代与多目标优化设计:研究人员对比了三目标和两目标优化策略。三目标优化聚焦于水接触角、TS 和 EB,以满足包装对机械性能和防水性的需求;两目标优化则侧重于水接触角和 TS 之间的平衡。经过多次迭代,两种策略都取得了稳定的预测精度,证明了代理模型在优化薄膜性能方面的有效性和稳健性。
  3. 参数重要性分析:通过多元二次回归分析,研究人员发现溶剂对薄膜性能的影响比添加剂更为显著。例如,NaOH 溶液对提高水接触角和透光率有明显作用,但增加温度虽然能改善水接触角和 TS,却会导致生产成本和能源消耗增加。
  4. 光学性能分析:研究人员对薄膜的透光率、紫外线(UV)阻隔率和红外线(IR)阻隔率进行了分析。结果显示,薄膜的透光率可在透明到不透明之间调节,UV 阻隔率分布广泛且均匀,IR 阻隔率相对较低。
  5. 薄膜聚类分析:研究人员运用 K-means 聚类和 t-SNE 投影等方法,对 242 个数据点进行分类。结果发现,不同的配方可以优化 CMC 薄膜,使其适用于不同的应用场景。
  6. 模型扩展与设计方案:为了进一步优化 CMC 薄膜,研究人员基于三目标数据集训练代理模型,设计了具有不同接触角的薄膜。结果表明,利用该模型可以在不影响机械性能的前提下,设计出具有可调节水接触角的薄膜。

研究结论与意义:突破困境,展望未来

这项研究成功地将材料科学、机器学习和优化技术相结合,设计出了具有高性能、可持续且性能可调的薄膜。通过低成本的溶剂调节,实现了薄膜机械、疏水和光学性能的同步提升。研究建立的数据驱动平台能够准确预测 CMC 薄膜的性能,并自主识别满足特定性能目标的最佳配方。
研究中表现最佳的薄膜,水接触角达到 113.7°,TS 为 37.7MPa,EB 为 31%,超越了添加昂贵添加剂的薄膜。此外,研究还开发了集成软件平台 ALA Designer,增强了数据管理能力,能够适应多种工业需求,为包装、制药和化妆品等行业提供了关键的技术支持。
该研究成果不仅推动了可持续材料领域的发展,还为多个行业提供了降低环境影响和生产成本的有效途径,为实现资源高效利用和可持续发展目标做出了重要贡献。它为未来的材料设计提供了新的范式,有望加速环保材料的研发和应用,引领行业朝着更加绿色、可持续的方向发展。

濠电姷鏁搁崑鐐哄垂閸洖绠伴柟闂寸贰閺佸嫰鏌涢锝囪穿鐟滅増甯掗悙濠囨煃鐟欏嫬鍔ゅù婊堢畺閺岋綁鎮㈤悡搴濆枈濠碘剝褰冨﹢閬嶅焵椤掑喚娼愰柟绋挎憸閳ь剚绋堥弲婵嬪焵椤掑嫭娑ч柕鍫熸倐瀵偊宕掗悙鏉戔偓閿嬨亜閹哄秶鍔嶉柣锕€閰e铏规嫚閹绘帩鍔夌紓浣割儐鐢€崇暦濠靛绠虫俊銈傚亾缂佲偓婢舵劖鐓熼柡鍐ㄥ€哥敮鑸垫交濠靛洨绡€闁汇垽娼у瓭濠电偠灏欐繛鈧€规洘鍨块獮姗€骞囨担鐟板厞闁诲氦顫夊ú鏍洪妸鈺傚仼闁惧繐婀辩壕浠嬫煕鐏炲墽鎳呮い锔奸檮娣囧﹪顢曢敐鍥╃厜閻庤娲樺ú鐔笺€侀弮鍫濆窛妞ゆ牭绲剧粊顐︽⒒娴g懓顕滅紒璇插€块幃褔骞樺鍕枔閳ь剨缍嗛崰妤呮偂濞嗘劗绠鹃柤濂割杺閸ゆ瑦顨ラ悙杈捐€块柡灞炬礋瀹曞爼濡搁妷銉︽嚈闁诲孩顔栭崳顕€宕滈悢鑲╁祦鐎广儱顦介弫濠囨煟閿濆懏婀版繛鍫熸倐濮婄粯鎷呴挊澶夋睏闂佺儵鍓濆Λ鍐ㄧ暦瑜版帗鎯炴い鎰剁稻閻濈兘姊虹粔鍡楀濞堟洘銇勯妷銉уⅵ闁哄本鐩獮姗€鎳犻澶嬓滃┑鐐差嚟婵參宕归崼鏇炶摕闁哄洢鍨归獮銏′繆閵堝拑宸ラ柛鎾讳憾閺岋綁濮€閳轰胶浠繝銏㈡嚀濡宓勯梺鍦濠㈡﹢锝為崨瀛樼厽婵炲棗鑻禍鎯р攽閻愯尙婀撮柛濠冩礋濠€渚€姊洪幐搴g畵婵☆偅鐟х划鍫⑩偓锝庡枟閻撳啰鎲稿⿰鍫濈婵﹩鍘鹃埞宥夋煣韫囨凹娼愮€规洘鐓¢弻娑㈠箛閵婏附鐝栧銈傛櫇閸忔﹢寮婚妸銉㈡斀闁糕剝鐟ラ埅闈涒攽閳藉棗鐏犳い鎴濐樀瀵鈽夐姀鐘殿唺闂佺懓顕崕鎰涢敓鐘斥拺閻犲洤寮堕崬澶娾攽椤斿搫鈧鍒掑鑸电劶鐎广儱鎳愰ˇ銊ヮ渻閵堝棙灏靛┑顔惧厴椤㈡瑩骞掑Δ浣叉嫼闁荤姴娲犻埀顒冩珪閻忎線姊洪崨濠冪叆濡ょ姵鎮傞崺銏ゅ箻鐠囪尙顓洪梺鎸庢濡嫬鈻撻妷銉富闁靛牆妫涙晶顒傜磼椤旇偐鐒搁柛鈺傜洴瀵粙顢橀悢鍝勫箞婵犵數鍋涘Λ娆撳礉閺囥垺鍊堕柍鍝勫亞濞堜粙鏌i幇顒€绾ч柛鐘筹耿閺岀喖顢涘姣櫻呪偓娈垮櫘閸o絽鐣烽幒鎳虫梹鎷呯憴鍕絻

10x Genomics闂傚倸鍊风粈渚€骞栭锕€纾归柣鐔煎亰閻斿棙鎱ㄥ璇蹭壕濡ょ姷鍋為悧鐘诲灳閺傝¥鈧帗鍒婇悥鍓坢 HD 闂備浇顕х€涒晠顢欓弽顓炵獥闁圭儤顨呯壕濠氭煙閸撗呭笡闁绘挻娲橀幈銊ノ熼悡搴′粯闂佽绻掓慨鐑藉焵椤掑喚娼愭繛鍙夌矒瀹曚即骞橀懜娈挎綗闂佸湱鍎ら〃鍛寸嵁閵忊剝鍙忔慨妤€妫楁晶顔尖攽椤旂厧鏆f慨濠冩そ瀹曘劍绻濋崒婊呮噯婵犵妲呴崑鍛垝瀹ュ桅闁哄啫鐗嗙粻鐟懊归敐鍥ㄥ殌濞寸姰鍨藉娲箹閻愭彃濮夐梺鍝勬噺缁捇骞冩ィ鍐╃劶鐎广儱妫涢崢閬嶆椤愩垺鎼愭い鎴濇噺閹便劑鍩€椤掆偓閳规垿鎮欑€涙ḿ绋囧┑鈽嗗亝缁挻淇婇悽绋跨疀闁哄鐏濆畵鍡涙⒑缂佹ǘ缂氶柡浣规倐閹剝鎷呴搹鍦紳婵炶揪绲介幉鈥筹耿閻楀牅绻嗛柣鎰煐椤ュ鎽堕悙鐑樼厱鐟滃酣銆冮崨顖滅焼闁糕剝绋掗悡鏇㈡煃閳轰礁鏆堢紓鍌涘哺閺屽秷顧侀柛蹇旂〒閸掓帒鈻庨幘铏€悗骞垮劚椤︿即寮查幖浣圭叆闁绘洖鍊圭€氾拷

婵犵數濮烽弫鎼佸磻濞戞娑欐償閵娿儱鐎梺鍏肩ゴ閺呮粌鐣烽弻銉﹀€甸柨婵嗛娴滅偤鏌嶇紒妯活棃闁诡喗顨婇弫鎰償閳ュ磭顔戠紓鍌欐閼宠泛鈻嶆晶淇皊t闂傚倸鍊风欢姘缚瑜嶈灋婵°倕鎳忛弲婵嬫煥濠靛棙宸濈紒鐘虫煥椤潡鎳滈棃娑橆潓濠碘槅鍋呰摫闁靛洤瀚伴獮妯兼崉鏉炴壆鎹曠紓鍌氬€哥粔宕囨濮樿泛钃熸繛鎴欏灩閸愨偓闂侀潧臎閸愶絾瀚涘┑鐘垫暩閸嬫盯鎮ф繝鍥у偍妞ゃ儳顎怱PR缂傚倸鍊搁崐鐑芥倿閿斿墽鐭欓柟鐑橆殕閸庡孩銇勯弽顐粶闁绘帒鐏氶妵鍕箳閸℃ぞ澹曟俊鐐€х紓姘跺础閹惰棄绠栫憸鏂跨暦椤愶箑唯闁靛牆妫楁刊浼存⒒娓氣偓閳ь剛鍋涢懟顖涙櫠閺夋垟鏀介柍銉﹀墯閸ょ喖鏌嶈閸撱劎绱為崱娑樼婵ǹ娉涘Ч鏌ユ煃閸濆嫭鍣洪柛濠傜仛缁绘盯骞嬮悙鍨櫑婵犳鍠栭崯鎾蓟濞戙垹绫嶉柟鐐綑椤忥拷

闂傚倸鍊风粈渚€骞夐敓鐘偓鍐幢濡炴洖鎼オ浼村川椤撶偟浜伴梻濠庡亜濞诧妇绮欓幒妤€鍚归柛鏇ㄥ灡閻撶喖鏌熼柇锕€澧婚柛銈囧枛閺屾洟宕奸悢绋垮攭濡ょ姷鍋為悧鐘差嚕閸洖绠i柣妯活問閸炲爼姊绘担鍛婂暈闁荤喆鍎辫灋婵犻潧妫ḿ鏍р攽閻樺疇澹橀幆鐔兼⒑闂堟侗妾х紒鑼帶闇夐柣鎴eГ閻撶喖鏌eΟ澶稿惈闁告柨绉堕幉鎼佸级閸喗娈婚梺璇″枔閸庣敻寮幘缁樻櫢闁跨噦鎷� - 婵犵數濮烽弫鎼佸磿閹寸姴绶ら柦妯侯槺閺嗭附銇勯幒鎴濐仼闁活厽顨婇弻娑㈠焺閸愶紕绱板銈傛櫆閻擄繝寮诲☉銏犵労闁告劖鍎冲В鈧梻浣告贡閸庛倝骞愭ィ鍐︹偓鍛存倻閽樺顔愰柡澶婄墕婢х晫绮旈悽鍛婄厱閹兼番鍨归悘銉╂煃閽樺妯€妤犵偞锕㈤、娑橆潩椤愩埄妫滃┑鐘垫暩閸嬬偤宕归崼鏇炵闁冲搫鍊婚々鍙夌節婵犲倸鏆熼柡鍡畵閺岋綁寮崶顭戜哗缂佺偓鍎抽妶鎼佸蓟濞戙垹鐒洪柛鎰靛幖椤ユ繈姊洪崨濠冣拹閻㈩垽绻濋獮鍐ㄎ旈崨顓熷祶濡炪倖鎸鹃崑妯何i幇鐗堚拺缂備焦岣块埊鏇㈡煟閻旀繂娲ょ粻顖炴倵閿濆骸鏋涚紒鐘崇叀閺岀喐瀵肩€涙ɑ閿梺璇″枙缁舵艾顫忓ú顏勫窛濠电姴鍊婚鍌涚節閳封偓閸曞灚鐤侀悗娈垮枟婵炲﹪骞冮姀銈嗗亗閹艰揪缍嗛崬瑙勪繆閻愵亜鈧牠寮婚妸鈺傚€舵繝闈涚墢閻滅粯绻涢幋娆忕仾闁绘挻鐟╅幃褰掑Ω閵夘喗笑闂佺ǹ锕ら…鐑藉箖閻戣棄顫呴柕鍫濇閸樺崬鈹戦悙鍙夘棡闁挎岸鏌h箛瀣姕闁靛洤瀚伴、鏇㈠閳轰礁澹庨柣搴ゎ潐濞叉粍绻涢埀顒傗偓娈垮枙缁瑩銆侀弽顓ф晝闁挎繂鎳忕拠鐐烘倵濞堝灝鏋熼柟顔煎€垮顐﹀箻缂佹ɑ娅㈤梺璺ㄥ櫐閹凤拷

濠电姷鏁搁崑鐐哄垂閸洖绠伴柟闂寸贰閺佸嫰鏌涢锝囪穿鐟滅増甯掗悙濠冦亜閹哄棗浜鹃弶鈺傜箖缁绘繈鎮介棃娴躲垽鎮楀鐓庢珝闁诡垰鏈幆鏃堝Ω閿旀儳骞橀柣搴ゎ潐濞叉牕煤閵堝棛顩锋繝濠傜墛閻撴洟鏌i幇顒傛憼閻忓骏绠撻弻鐔兼寠婢跺ň鍋撴繝姘劦妞ゆ帒锕︾粔鐢告煕閹炬潙鍝烘い銏℃婵¤埖寰勭€n亙鍖栭梻浣筋潐婢瑰寮插☉娆庣箚闁惧繐婀辩壕濂告煏婵炑冨枤閺嗩參姊洪悷鏉挎Щ闁瑰啿閰i妶顏呭閺夋垹顦ㄩ梺闈浤涢埀顒勫磻閹惧绡€婵﹩鍘鹃崢鎼佹煟鎼搭垳绉甸柛瀣閹便劑宕奸妷锔惧幐閻庡厜鍋撻柍褜鍓熷畷鐗堟償閵娿儳鍘洪梺鍝勫暙閻楀棝宕¢幎鑺ョ厽婵☆垱瀵ч悵顏呮叏閿濆懎顏柡宀嬬稻閹棃濮€閳垛晛顫岄梻浣告啞濮婂湱鏁垾宕囨殾婵犻潧顑嗛崑鍕煟閹惧啿顔傞柕澶嗘櫆閻撱儵鏌i弴鐐测偓鍦偓姘炬嫹

相关新闻
    生物通微信公众号
    微信
    新浪微博
    • 急聘职位
    • 高薪职位

    知名企业招聘

    今日动态 | 人才市场 | 新技术专栏 | 中国科学人 | 云展台 | BioHot | 云讲堂直播 | 会展中心 | 特价专栏 | 技术快讯 | 免费试用

    版权所有 生物通

    Copyright© eBiotrade.com, All Rights Reserved

    联系信箱:

    粤ICP备09063491号