我国学者在光电催化全解水制氢研究方面取得新进展

【字体: 时间:2021年08月25日 来源:国家自然科学基金委员会

编辑推荐:

  

  

图1 自然光合作用Z机制启发的光电催化全解水反应原理示意图

  在国家自然科学基金“人工光合成”基础科学中心项目(批准号:22088102)等资助下,中国科学院大连化学物理研究所李灿院士团队成功实现了高效光电催化全分解水过程,分解水制氢效率达到4.3%,是目前文献最好结果。研究成果以“多媒介调控的无偏压光电催化全解水制氢效率超过4%(Unassisted Photoelectrochemical Cell with Multimediator Modulation for Solar Water Splitting Exceeding 4% Solar-to-Hydrogen Efficiency)”为题,于2021年8月11日在线发表于《美国化学会志》(Journal of the American Chemical Society)上,论文链接:https://pubs.acs.org/doi/10.1021/jacs.1c00802。

  光电催化全分解水制氢是将太阳光和水转化为化学燃料的有效方法,通过在空间和功能上解耦两个光电极(光阳极和光阴极)的光吸收和催化功能,从而更高效地利用太阳光,同时避免了外加偏压和牺牲试剂的使用。从原理上来说,这种结构类似于自然光合作用体系(光系统II和光系统I)提供水氧化和生产太阳能燃料的Z机制构型。如果能利用太阳能实现高效的光电催化全分解水制氢,改变能源和化工产业对化石资源的过度依赖,有助于解决气候危机、能源安全等问题,实现经济和地球生态可持续发展。

  研究团队前期通过模拟光系统II中关键组分的重要功能,构筑了高效的光电催化水氧化体系(J. Am. Chem. Soc. 2018, 140, 3250;Adv. Mater. 2019, 31, 1902069)。此工作基于自然光合作用的原理,成功实现了由自然光合作用Z机制启发的高效光电催化全分解水过程。通过将无机氧化物基光阳极(BiVO4),有机聚合物基光阴极(PBDB-T:ITIC:PC71BM)与多个电荷传输媒介相耦合,组装了一个高效的无偏压全分解水光电化学池。该体系具有如下特性:(1)有机聚合物的离散能级特性使得有机光阴极和无机光阳极的光谱吸收具有较好的互补性,极大地提高了太阳能的利用率;(2)在捕光材料和电子受体/供体之间构建了一个包含多个电荷传输媒介的仿生电荷转移链。在电化学电位梯度的驱动下,光生电子通过这些电荷传输媒介有效转移,提高了电荷传输速率并降低了电荷复合速率,从而实现高效的电荷分离和传输,太阳能-氢气(STH)转换效率达到4.3%。

  该研究通过使用具有匹配能级的多媒介调控的仿生策略,为高效人工光合体系的合理设计和组装提供了新颖的思路和有效的方法。

相关新闻
生物通微信公众号
微信
新浪微博
  • 搜索
  • 国际
  • 国内
  • 人物
  • 产业
  • 热点
  • 科普
  • 急聘职位
  • 高薪职位

知名企业招聘

热点排行

    今日动态 | 人才市场 | 新技术专栏 | 中国科学人 | 云展台 | BioHot | 云讲堂直播 | 会展中心 | 特价专栏 | 技术快讯 | 免费试用

    版权所有 生物通

    Copyright© eBiotrade.com, All Rights Reserved

    联系信箱:

    粤ICP备09063491号