-
生物通官微
陪你抓住生命科技
跳动的脉搏
著名华人科学家Nature发布表观遗传重大发现
【字体: 大 中 小 】 时间:2016年02月18日 来源:生物通
编辑推荐:
发表在2月10日《自然》(Nature)杂志上的一项新研究,描绘了可显著促进基因转换为蛋白质的一种小化学修饰。这一研究发现与近期其他的研究结果一起,为分子生物学“中心法则”增添了一个关键的新层面:表观转录组(epitranscriptome)。
生物通报道 发表在2月10日《自然》(Nature)杂志上的一项新研究,描绘了可显著促进基因转换为蛋白质的一种小化学修饰。这一研究发现与近期其他的研究结果一起,为分子生物学“中心法则”增添了一个关键的新层面:表观转录组(epitranscriptome)。
论文的资深作者、芝加哥大学化学系教授、霍华德休斯医学研究所研究员何川(Chuan He)说:“这一研究发现为我们进一步打开了通往一个全新生物学世界的窗口。这些修饰对于几乎所有的生物学过程都有着重要的影响。”
分子生物学的中心法则描述了遗传信息从DNA拷贝为临时的RNA“转录物”,后者为蛋白质生成提供指令的这一细胞信号通路。自Francis Crick于1956年首次提出这一假设理论以来,科学家们已发现了大量调控这一过程的DNA和蛋白质修饰。
然而直到近年,科学家们才将焦点放在特异靶向RNA步骤的动态修饰上来。2011年,何川的研究小组发现了第一个可以逆转最普遍的mRNA甲基化修饰:N6-甲基腺苷(m6A)的RNA去甲基化酶,证明和DNA及蛋白质中看到的一样,添加和移除这一甲基可以显著影响这些信使RNA,并影响基因表达(何川教授Nature子刊揭示调控新机制 )。随后,科学家们发现,动态及可逆的m6A甲基化修饰控制了大多数信使RNA的代谢和功能及蛋白质生成(Cell重大成果:改写教科书的遗传学新发现)。
在这项Nature新研究中,来自芝加哥大学和以色列特拉维夫大学的研究人员描绘了第二种功能性mRNA甲基化修饰:N1-甲基腺苷(m1A)。像m6A一样,这种小化学修饰进化上保守且常见,存在于人类、啮齿类动物和酵母中。但它的定位及对基因表达的影响反映了一种新的表观转录组控制形式,表明了一个更大的细胞“控制面板”。
何川说:“发现m1A具有非常重要的意义,不仅因为其自身具有影响生物过程的潜力,并且它还证实了不止有一个功能修饰这一假说。有可能在不同的位点有多种修饰,每一种携带了一种不同的信息控制了mRNA的命运和功能。”
研究人员估计,m1A存在于三分之一以上人类表达基因的转录物上。一些甲基化基因相比于未甲基化基因翻译增加,在所有细胞类型中生成的蛋白质水平增高了近2倍。这表明像m6A一样,m1A有可能是细胞在诸如细胞分裂、分化等重要的过程中或处于压力下时,快速促进成百或成千特异基因表达的一种机制。
何川说:“mRNA是调控基因表达的一个完美场所,因为它们可以编码来自转录的信息,直接影响翻译;你可以添加一条共有序列到一组基因中,利用这一序列的一种修饰可以轻易地同时控制数百种转录物。如果你想快速改变几百种或一千种基因的表达,这提供了最好的方法。”
然而,尽管m1A 和m6A发挥了互补效应,它们是通过不同的信号通路来影响mRNA的。一些研究发现m6A主要定位在信使RNA分子的尾部,提高了它们的翻译和周转速度,m1A则主要靠近mRNA转录物的起始密码子——蛋白质翻译开始之处。不同的机制使得可以更精细地调节转录后基因表达,或在不同的生理状况下选择性激活特殊的基因。
Weill Cornell医学院副教授Christopher Mason(未参与该研究)说:“这项研究描绘了‘表观转录组’这一令人兴奋的新领域中一个突破性的发现。这项工作的重要之处在于,近期的研究发现m6A富集于基因两端,而现在我们知道m1A帮助调控了基因起点,这提出了许多关于揭示这一‘表观转录组密码’的问题。”
未来的研究将探究m1A甲基化在人类发育、糖尿病和癌症一类疾病中的作用,以及其作为治疗靶点的潜力。
此外,在同一日的Nature Chemical Biology杂志上,来自北京大学的研究人员报告称他们开发出了一种新技术,通过全转录组绘图揭示出了可逆及动态的m1A甲基化组。他们的新方法使得可以综合分析m1A修饰,为研究通过可逆及动态的m1A甲基化作用实现的潜在表观遗传调控的功能提供了宝贵的工具(北京大学Nature子刊发布表观遗传新成果)。
(生物通:何嫱)
生物通推荐原文摘要:
The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA
Gene expression can be regulated post-transcriptionally through dynamic and reversible RNA modifications. A recent noteworthy example is N6-methyladenosine (m6A), which affects messenger RNA (mRNA) localization, stability, translation and splicing. Here we report on a new mRNA modification, N1-methyladenosine (m1A), that occurs on thousands of different gene transcripts in eukaryotic cells, from yeast to mammals, at an estimated average transcript stoichiometry of 20% in humans. Employing newly developed sequencing approaches, we show that m1A is enriched around the start codon upstream of the first splice site: it preferentially decorates more structured regions around canonical and alternative translation initiation sites, is dynamic in response to physiological conditions, and correlates positively with protein production. These unique features are highly conserved in mouse and human cells, strongly indicating a functional role for m1A in promoting translation of methylated mRNA.
作者简介:
何川
现为芝加哥大学化学系教授、生物物理动态研究所主任。他的研究工作涉及化学、化学生物学、微生物学、生物无机化学、细胞生物学和结构生物学等广泛领域。近年来主要专注于表观遗传学方面的研究,为“RNA表观遗传学”这个全新研究领域的发起人之一,发现了首个去除RNA修饰的蛋白酶,并开发了DNA表观遗传学中DNA修饰碱基5-羟甲基胞嘧啶和5-醛基胞嘧啶等的检测和测序方法,在表观遗传学研究上具有突出的贡献。已经发表151篇SCI学术论文,包括Nature、Science、Cell。迄今为止,在Nature,Science,JACS,Angew. Chem,Mol. Microbiol等国际权威学术期刊发表论文140余篇。何川曾荣获诸多荣誉:2003年获得美国塞尔学者奖和研究创新奖;2004年获得美国癌症研究青年科学家奖和凯克基金会医学研究杰出青年学者奖;2005年获得斯隆研究奖和贝克曼青年科学家奖;2006年获得“Camille Dreyfus”学者奖;07年获得CACPA杰出青年奖;08年获巴勒斯维尔康基金传染病致病机理研究奖;2010年获美国化学学会Akron Section奖和2010年获国际生物无机化学学会的Early Career奖。