-
生物通官微
陪你抓住生命科技
跳动的脉搏
同济大学教授连发两篇文章:非编码RNA如何触发癌症
【字体: 大 中 小 】 时间:2016年11月16日 来源:生物通
编辑推荐:
长链非编码RNA(Long non-coding RNA, lncRNA)是一类本身不编码蛋白、转录本长度超过200nt的RNA分子,但是它可以在多种层面上调控基因的表达。近年来大量研究表明这种本来被科学家们认为是基因组转录“噪音”的成分与肿瘤发生发展密切相关。
近期来自同济大学生命科学与技术学院的陆东东教授研究组连发两项成果,分别介绍了长链非编码RNA CUDR和HULC、MALAT1、端粒重复结合蛋白2(TRF2)在癌症发生过程中的作用。这两项成果均公布在Scientific Reports杂志上。
第一项研究中,研究人员发现炎症因子IL6协同长链非编码RNA CUDR促发了小鼠炎症性肝脏中肝样细胞的恶性转化,加速了人类胚胎干细胞诱导的肝样细胞的体内外恶性生长。
研究人员指出,IL6能协同CUDR通过癌蛋白CREPT,增强了肝样细胞中组蛋白甲基化转移酶SUV39H1的功能,同时以依赖SUV39H1的活性增强了肝样细胞中的NF-κB表达,进一步激活了肝样细胞中信号传导与转录激活因子3(Stat3)的活性,从而改变了肝样细胞中的关键micoRNAs和lncRNAs(如MEG3)的表达及其功能。
这项研究从表观遗传水平上揭示了IL6协同CUDR通过激活NF-κB信号通路加剧人类肝样细胞恶性转化的新机制。
另外一项研究则现长链非编码RNA-HULC、MALAT1、端粒重复结合蛋白2(TRF2)在人类肝癌组织中均呈上调表达,并通过体内外实验证实了HULC和MALAT1协同调控TRF2促进肝癌干细胞的生长能力。
研究人员发现一方面,HULC与MALAT1联合增强了癌蛋白CREPT、 RNA polII、 P300与TRF2启动子区域的共同结合能力,从而增加了TRF2的转录,特别是又增强了TRFII蛋白的永生化修饰。而且过量的TRF2通过替代端粒结构上的CST/AAF蛋白和招募POT1, ExoI, SNM1B, HP1 α蛋白,进一步保护了端粒。
另一方面, HULC 协同MALAT1依赖TRF2显著减少了端粒酶亚单位TERC启动子区域的甲基化,从而促进了TERC的转录。最终,HULC 协同MALAT1增强了肝癌干细胞中RFC与 PCNA间的相互作用、微卫星的不稳定性 (MSI),促发了细胞的异常增殖。这项研究首次揭示了HULC与MALAT1联合影响肝癌干细胞恶性表型的分子机制。
作者简介:
陆东东
细胞生物学专业博士学历(南京师范大学生命科学学院分子细胞生物学研究所),疾病基因组学博士后经历(清华大学医学院基因组研究所)。曾任江苏省启东肝癌研究所助理研究员、副研究员。
本人对肿瘤分子生物学研究尤为兴趣,能熟练操作细胞与分子生物学相关技术,如 RT-PCR(real-time PCR)、 Northern blot、ISH、Western-blot、2-DE、IHC、ICC、 IP、Gel shift assay(EMSA)、reporter gene assay、Pull-down、Pulse-Chase-pulse、Chromatin Immunoprecipitation(CHIP)、run on (off) 、Microarray assay、RNAi、 virus expression system、Tet on(off)gene inducible expression system、 Regular tumorigenesis tests in vivo and vitro、Yeast two hybridization、Phage display Confcoal microscopy、FACS and Skills in Bioimformatics。曾参与编写《肝癌》(江正辉主编)、《亚临床肝癌》(江正辉主编)、《消化系统疾病鉴别诊断与治疗学》(池肇春,马素真主编)等专著的部分章节。
2006年1月起到同济大学生命科学与技术学院从事教学科研工作,先后主讲的课程包括:《分子生物学》(生命科学与技术学院硕士研究生)、《疾病与分子生物学》(全校本科生公选课)、《生物化学》(生命科学与技术学院本科生)。
原文摘要:
Inflammatory cytokine IL6 cooperates with CUDR to aggravate hepatocyte-like stem cells malignant transformation through NF-κB signaling
Inflammatory cytokines and lncRNAs are closely associated with tumorigenesis. Herein, we reveal inflammatory cytokines IL6 cooperates with long noncoding RNA CUDR to trigger the malignant transformation of human embryonic stem cells-derived hepatocyte-like stem cells. Mechanistically, IL6 cooperates with CUDR to cause MELLT3 to interact with SUV39h1 mRNA3′UTR and promote SUV39h1 expression. Moreover, the excessive SUV39h1 also increases tri-methylation of histone H3 on nineth lysine (H3K9me3). Intriguingly, under inflammatory conditions, H3K9me3 promotes the excessive expression and phosphorylation of NF-κB, and in turn, phorsphorylated NF-κB promotes the expression and phosphorylation of Stat3. Furthermore, that the phosphorylated Stat3 loads onto the promoter region of miRs and lncRNAs. Ultimately, the abnormal expression of miRs and lncRNAs increased telomerase activity, telomere length and microsatellite instability (MSI), leading to malignant transformation of hepatocyte-like stem cells.
HULC cooperates with MALAT1 to aggravate liver cancer stem cells growth through telomere repeat-binding factor 2
The dysregulation of lncRNAs has increasingly been linked to many human diseases, especially in cancers. Our results demonstrate HULC, MALAT1 and TRF2 are highly expressed in human hepatocellular carcinoma tissues, and HULC plus MALAT1 overexpression drastically promotes the growth of liver cancer stem cells. Mechanistically, both HULC and MALAT1 overexpression enhanced RNA polII, P300, CREPT to load on the promoter region of telomere repeat-binding factor 2(TRF2), triggering the overexpression, phosphorylation and SUMOylation of TRF2. Strikingly, the excessive TRF2 interacts with HULC or MALAT1 to form the complex that loads on the telomeric region, replacing the CST/AAF and recruiting POT1, pPOT1, ExoI, SNM1B, HP1 α. Accordingly, the telomere is greatly protected and enlonged. Furthermore, the excessive HULC plus MALAT1 reduced the methylation of the TERC promoter dependent on TRF2, increasing the TERC expression that causes the increase of interplay between TRET and TERC. Ultimately, the interaction between RFC and PCNA or between CDK2 and CyclinE, the telomerase activity and the microsatellite instability (MSI) are significantly increased in the liver cancer stem cells. Our demonstrations suggest that haploinsufficiency of HULC/MALAT1 plays an important role in malignant growth of liver cancer stem cell.