-
生物通官微
陪你抓住生命科技
跳动的脉搏
下个十年,癌症研究最为紧迫是肥胖问题
【字体: 大 中 小 】 时间:2015年11月11日 来源:生物通
编辑推荐:
要了解肥胖与癌症之间的复杂关联,就需要区分哪些主要因素,哪些是次要因素。肥胖能通过胰岛素抵抗和高水平循环胰岛素和葡萄糖水平,引起全身的代谢失调,同时还有过量的胆固醇和其它血脂,这会损坏血管生长和凝血过程,改变细胞因子表达,并加剧炎症发生,增加激素水平,如雌二醇、瘦素、以及胰岛素样生长因子-1 (IGF-1)。
生物通报道:近年来关于肥胖与癌症的研究都集中在预防癌症的行为干预方面了,但是对于全球将近7亿的肥胖成人来说,除了减肥植物,更有效的措施是减轻他们患病风险,美国临床肿瘤学会,世界癌症研究基金会等组织指出,肥胖相关的癌症就会是下个十年,癌症研究领域最为紧迫的问题。
(内分泌功能障碍: 肥胖可以增加芳香化酶aromatase表达,从而导致雌二醇水平增加,促进雌激素依赖性肿瘤发展,如雌激素受体阳性乳腺癌和子宫内膜癌)
问题二:在肥胖和癌症关系中哪些是主要因素,哪些是次要因素?
要了解肥胖与癌症之间的复杂关联,就需要区分哪些主要因素,哪些是次要因素。肥胖能通过胰岛素抵抗和高水平循环胰岛素和葡萄糖水平,引起全身的代谢失调,同时还有过量的胆固醇和其它血脂,这会损坏血管生长和凝血过程,改变细胞因子表达,并加剧炎症发生,增加激素水平,如雌二醇、瘦素、以及胰岛素样生长因子-1 (IGF-1)。
过去的二十年里,科学家们利用遗传和药理方法破解了这其中的一部分奥秘。首先细胞间信号无疑是其中一个重要因素,一些临床和流行病学研究发现肥胖或2型糖尿病患者许多类型的癌症风险增加。此外,有许多的研究表明一些用于治疗2型糖尿病的药物,根据它们对高胰岛素血症及高血糖症发挥的是增强或抑制效应,可对应增加或降低癌症的风险。事实上,癌症和2型糖尿病共享许多代谢风险因子,其中高胰岛素/IGF、高血糖、葡萄糖剥夺、缺氧和炎症因子被认为有可能是这两种疾病之间的生物学关联因素。
许多癌症患者都遭受消耗性综合征(wasting syndrome),称为恶病质,患者体内的肌肉和脂肪组织被破坏。今年,根据两项果蝇肿瘤模型的研究表明,一种抑制胰岛素信号的肿瘤分泌蛋白,可能是触发这种消耗的一个因素。
这项研究表明Impl2——一个哺乳动物蛋白(可拮抗胰岛素信号)的果蝇同系物,在这种全身性消耗中起着关键作用。研究采用一个致癌基因同源物来激活Impl2,但是可能其他致癌基因也发挥类似的作用。果蝇Impl2的功能很像哺乳动物胰岛素生长因子(IGF)结合蛋白,其可以阻断胰岛素信号。一些研究表明,这些蛋白质在癌症中是上调的。
(生物通:万纹)
原文文献:
Breaking the Cancer-Obesity Link(来自http://www.the-scientist.com/)
K. Subbaramaiah et al., “Increased levels of COX-2 and prostaglandin E2 contribute to elevated aromatase expression in inflamed breast tissue of obese women,” Cancer Discov, 2:356-65, 2012.
P.G. Morris et al., “Inflammation and increased aromatase expression occur in the breast tissue of obese women with breast cancer,” Cancer Prev Res, 4:1021-29, 2011.
S. Chen et al., “Obesity or overweight is associated with worse pathological response to neoadjuvant chemotherapy among Chinese women with breast cancer,” PLOS ONE, 7:e41380, 2012.
B. Guiu et al., “Visceral fat area is an independent predictive biomarker of outcome after first-line bevacizumab-based treatment in metastatic colorectal cancer,” Gut, 59:341-47, 2010.
J. Chen et al., “Insulin caused drug resistance to oxaliplatin in colon cancer cell line HT29,” J Gastrointest Oncol, 2:27-33, 2011
R.E. De Angel et al., “Stearoyl gemcitabine nanoparticles overcome obesity-induced resistance to gemcitabine in a mouse model of breast cancer,” Cancer Biol Ther, 14:357-64, 2013.
Y. Naguib et al., “Solid lipid nanoparticle formulations of docetaxel prepared with high-melting point triglycerides: In vitro and in vivo evaluation,” Mol Pharm, 11:1239-49, 2014.
L.M. Nogueira et al., “Calorie restriction and rapamycin inhibit MMTV-Wnt-1 mammary tumor growth in a mouse model of postmenopausal obesity,” Endocr Relat Cancer, 19:57-68, 2012.
H. Liu et al., “Metformin and the mTOR inhibitor everolimus (RAD001) sensitize breast cancer cells to the cytotoxic effect of chemotherapeutic drugs in vitro,” Anticancer Res, 32:1627-37, 2012.
H. Liu et al., “The mTOR inhibitor RAD001 sensitizes tumor cells to the cytotoxic effect of carboplatin in breast cancer in vitro,” Anticancer Res, 31:2713-22, 2011.
C.J. Fabian et al., “Favorable modulation of benign breast tissue and serum risk biomarkers is associated with >10% weight loss in postmenopausal women,” Breast Cancer Res Treat, 142:119-32, 2013.
R.E. De Angel et al., “The enhancing effects of obesity on mammary tumor growth and Akt/mTOR pathway activation persist after weight loss and are reversed by Rad001,” Mol Carcinog, 52:446-58, 2013.
S.D. Hursting et al., “The obesity-cancer link: Lessons learned from a fatless mouse,” Cancer Res, 67:2391-93, 2007.
K. Aung et al., “Risk of developing diabetes and cardiovascular disease in metabolically unhealthy normal-wight and metabolically healthy obese individuals,” J Clin Endocrinol, 99:462-68, 2014.
P. Pajunen et al., “Metabolically healthy and unhealthy obesity phenotypes in the general population,” BMC Public Health, 11:754, 2011.