Cell:解码线虫的全脑活动

【字体: 时间:2015年10月20日 来源:生物通

编辑推荐:

  最近,奥地利分子病理学研究所(IMP)Manuel Zimmer带领的研究小组,揭示了秀丽隐杆线虫(Caenorhabditis elegans)的大脑活动。科学家们发现,脑细胞(神经元)——被组织在一个全脑网络中,尽管发挥着不同的功能,但以一种集体的方式相互协调。相关研究结果,发表在最近一期的《Cell》杂志。

  

生物通报道:最近,奥地利分子病理学研究所(IMP)Manuel Zimmer带领的研究小组,揭示了秀丽隐杆线虫(Caenorhabditis elegans)的大脑活动。科学家们发现,脑细胞(神经元)——被组织在一个全脑网络中,尽管发挥着不同的功能,但以一种集体的方式相互协调。他们也将线虫大脑中这些协调活动与产生行为的过程联系起来。相关研究结果,发表在最近一期的《Cell》杂志。延伸阅读:《Neuron》:首次描述斑马鱼全脑活动图

神经科学的一个主要目标是,阐明大脑如何发挥整体功能,以及它是如何产生行为的。解决这个难题的最大挑战在于,神经系统的复杂性。例如,一只小鼠的大脑,由成千上万个神经元组成,它们以高度复杂的方式相互连接。与之相反,线虫的神经系统只包含302个神经元。由于它的易操作性和它的发育特性,这种微小、透明的虫子,已经成为基础研究最重要的模式生物。近30年来,单个神经元之间的连接已经众所周知。尽管神经元的数目较少,但是其神经网络具有高度的复杂性和复杂行为的输出;因此,线虫是研究脑功能的一种选择动物。

全脑网络中神经元群的相互作用
研究人员主要集中在研究单个或极少数神经细胞的功能及其相互作用,以解释诸如运动这样的行为。对于线虫来说,我们已经知道,一些单个神经元在网络中如何发挥独立单元的功能,但是,它们如何作为一个群组起作用,仍然是未知的。Manuel Zimmer想在他研究中解决这个问题。他和他的团队一起,将目前两种最先进的技术结合起来:首先,科学家使用三维显微镜技术,同时、快速地测量大脑的不同区域;其次,他们使用一种荧光蛋白对线虫进行了遗传改造,使其神经元在活跃的时候闪光。Zimmer解释了这种方法的优势:“这种组合对于我们来说很有帮助,因为它可让我们进行实时的、全脑单细胞分辨率的记录。”

索取单细胞研究的全套解决方案

读懂线虫的思想
Zimmer和他的团队在动物试图寻找食物时,测试了它们对外界刺激的反应。在显微镜下,研究人员看到了一幅迷人的图片,博士后科学家Saul Kato解释说:“我们看到,大多数的神经元用一种全脑的方式不断地活跃和互相协调。它们作为一个整体。”这些动物在这些实验中是不会动的,因此,它们的反应代表着意图,而不是反映实际运动。

科学家们用不同的显微镜技术,设置了自由移动的线虫,能够检测到启动运动的神经元。某些网络的活动和运动冲动之间,有直接的关系;因此,Zimmer和他的同事能够明显读懂线虫的想法。Zimmer指出:“这些网络活动不仅代表短动作,而且它们能组装成更持久的行为策略,如觅食。这在之前是没有人做到的。”类似的神经活动模式,也在较高等的动物中发现过,但到目前为止,大脑亚区中只有一小部分的神经元,可以在同一时间被检测到。因此,Zimmer和他的同事们相信,他们的结果代表了脑功能的基本原则,虽然线虫只是哺乳动物的远亲。

分子机制研究
神经生物学领域的许多问题,在很大程度上仍然未得到解决,比如:如何做出决策,或者大脑是否以一种正式算法的方式运作,像电脑。在下一阶段的研究中,Manuel Zimmer试图分析他所研究的这些过程背后的分子机制。他说:“对持久脑状态(如睡眠和觉醒)有一个更深入的了解,也是很有趣的。”从而奠定了他未来的长远计划。

(生物通:王英)

生物通推荐原文摘要:
Global Brain Dynamics Embed the Motor Command Sequence of Caenorhabditis elegans
Summary: While isolated motor actions can be correlated with activities of neuronal networks, an unresolved problem is how the brain assembles these activities into organized behaviors like action sequences. Using brain-wide calcium imaging in Caenorhabditis elegans, we show that a large proportion of neurons across the brain share information by engaging in coordinated, dynamical network activity. This brain state evolves on a cycle, each segment of which recruits the activities of different neuronal sub-populations and can be explicitly mapped, on a single trial basis, to the animals’ major motor commands. This organization defines the assembly of motor commands into a string of run-and-turn action sequence cycles, including decisions between alternative behaviors. These dynamics serve as a robust scaffold for action selection in response to sensory input. This study shows that the coordination of neuronal activity patterns into global brain dynamics underlies the high-level organization of behavior.

 

 

 

濠电偞鍨堕幐鎼侇敄閸緷褰掑炊閳规儳浜鹃柣鐔煎亰濡插湱鈧鎸哥€涒晝鈧潧銈搁弫鍌炴倷椤掍焦鐦庨梺璇插缁嬫帡宕濋幒妤€绀夐柣鏃傚帶杩濇繝鐢靛Т濞茬娀宕戦幘鎰佹僵鐎规洖娲ㄩ悾铏圭磽閸屾瑧顦︽俊顐g矒瀹曟洟顢旈崨顖f祫闂佹寧绻傞悧鎾澄熺€n喗鐓欐繛鑼额嚙楠炴﹢鏌曢崶銊ュ摵鐎殿噮鍓熼獮宥夘敊閻e本娈搁梻浣藉亹閻℃棃宕归搹顐f珷闁秆勵殕椤ュ牓鏌涢幘鑼槮濞寸媭鍨堕弻鏇㈠幢濡ゅ﹤鍓遍柣銏╁灡婢瑰棗危閹版澘顫呴柣娆屽亾婵炲眰鍊曢湁闁挎繂妫欑粈瀣煃瑜滈崜姘┍閾忚宕查柛鎰ㄦ櫇椤╃兘鏌ㄥ┑鍡欏ⅵ婵☆垰顑夐弻娑㈠箳閹寸儐妫¢梺璇叉唉婵倗绮氶柆宥呯妞ゆ挾濮烽鎺楁⒑鐠団€虫灁闁告柨楠搁埢鎾诲箣閿旇棄娈ュ銈嗙墬缁矂鍩涢弽顓熺厱婵炲棙鍔曢悘鈺傤殽閻愬弶鍠橀柟顖氱Ч瀵噣宕掑Δ浣规珒

10x Genomics闂備礁鎼崐鐟邦熆濮椻偓楠炴牠鈥斿〒濯爄um HD 闁诲孩顔栭崰鎺楀磻閹剧粯鐓曟慨妯煎帶閻忕姷鈧娲滈崰鎾舵閹烘骞㈡慨姗嗗墮婵啴姊洪崨濠傜瑨婵☆偅绮嶉妵鏃堝箹娴g懓浠㈤梺鎼炲劗閺呮粓鎮鹃柆宥嗙厱闊洤顑呮慨鈧┑鐐存綑濡粓濡甸幇鏉垮嵆闁绘ḿ鏁搁悡浣虹磽娴e憡婀版俊鐐舵铻為柛褎顨呯粈鍡涙煕閳╁啞缂氶柍褜鍏涚划娆撳极瀹ュ鏅搁柨鐕傛嫹

婵犵數鍋涘Λ搴ㄥ垂閼测晜宕查悗锝庡亞閳绘棃鎮楅敐搴″箺缂佷胶娅墂ist闂備線娼уΛ妤呮晝閿濆洨绠斿鑸靛姇濡ɑ銇勯幘璺轰粶缂傚秳绶氶弻娑㈠冀閵娧冣拡濠电偛鐗婇崢顥窱SPR缂傚倷鐒︾粙鎺楁儎椤栫偛鐒垫い鎺嗗亾妞わ缚鍗抽幃褔宕妷銈嗗媰闂侀€炲苯澧村┑鈥愁嚟閳ь剨缍嗛崜姘跺汲閳哄懏鍊垫繛鎴炵懃婵啴鏌涢弮鎾村

闂備礁鎲¢〃鍡椕哄⿰鍛灊闊洦绋掗崵鍕煟閹邦剦鍤熼柕鍫熸尦楠炴牠寮堕幋鐘殿唶闂佸憡鐟ュΛ婵嗩潖婵犳艾惟闁靛绲煎ù鐑芥煟閻樿京鍔嶇憸鏉垮暣閹儵鏁撻敓锟� - 婵犵數鍎戠徊钘夌暦椤掑嫬鐭楅柛鈩冡缚椤╂煡鏌涢埄鍐惧毀闁圭儤鎸鹃々鐑藉箹鏉堝墽绉甸柛搴㈠灥閳藉骞橀姘濠电偞鍨堕幖鈺傜濠婂啰鏆﹂柣鏃囨绾惧ジ鏌涢埄鍐闁告梹甯¢幃妤呭捶椤撶偘妲愰梺缁樼⊕閻熝囧箯鐎n喖绠查柟浼存涧閹線姊洪崨濠傜濠⒀勵殜瀵娊鎮㈤悡搴n唹濡炪倖鏌ㄩ悘婵堢玻濞戙垺鐓欓悹銊ヮ槸閸婂鎮烽姀銈嗙厱婵炲棙锚閻忋儲銇勯銏╁剶鐎规洜濞€瀵粙顢栭锝呮诞鐎殿喗鎮傞弫鎾绘晸閿燂拷

濠电偞鍨堕幐鎼侇敄閸緷褰掑炊椤掆偓杩濇繝鐢靛Т鐎氼噣鎯屾惔銊︾厾鐎规洖娲ゆ禒婊堟煕閻愬瓨灏﹂柟钘夊€婚埀顒婄秵閸撴岸顢旈妶澶嬪仯闁规壋鏅涙俊铏圭磼閵娧冾暭闁瑰嘲鎳庨オ浼村礃閵娧€鍋撴繝姘厸閻庯綆鍋勬慨鍫ユ煛瀹€鈧崰搴ㄥ煝閺冨牆鍗抽柣妯挎珪濮e嫰鏌f惔銏⑩姇闁告梹甯″畷婵嬫偄閻撳宫銉╂煥閻曞倹瀚�

相关新闻
    生物通微信公众号
    微信
    新浪微博
    • 搜索
    • 国际
    • 国内
    • 人物
    • 产业
    • 热点
    • 科普
    • 急聘职位
    • 高薪职位

    知名企业招聘

    今日动态 | 人才市场 | 新技术专栏 | 中国科学人 | 云展台 | BioHot | 云讲堂直播 | 会展中心 | 特价专栏 | 技术快讯 | 免费试用

    版权所有 生物通

    Copyright© eBiotrade.com, All Rights Reserved

    联系信箱:

    粤ICP备09063491号