-
生物通官微
陪你抓住生命科技
跳动的脉搏
Cell子刊:干细胞的iCRISPR平台
【字体: 大 中 小 】 时间:2014年06月23日 来源:生物通
编辑推荐:
来自美国斯隆-凯特琳研究所等处的研究人员创建了一种多能干细胞基因组编辑平台:iCRISPR,这一平台能快速,高效的敲除干细胞中的基因,而且还能在干细胞分化过程中,进行阶段特异性的基因敲除,这将在人类疾病复杂病理研究中大放异彩。
这一研究成果公布在Cell Stem Cell杂志6月在线版上。
CRISPR也就是Clustered regularly interspaced short palindromic repeats(规律成簇间隔短回文重复),这是一类广泛分布于细菌和古菌基因组中的重复结构。研究表明,CRISPR与一系列相关蛋白、前导序列一起,能为原核生物提供对抗噬菌体等外源基因的获得性免疫能力。
这种结构的作用机理可能与真核生物的RNA干扰过程类似,此前来自麻省理工学院和哈佛大学的研究团队就利用产脓链球菌和嗜热链球菌中的CRISPR酶和RNA,在小鼠和人类细胞的DNA中进行了插入,切割,修复,和编辑。
人体多能干细胞(hPSCs)不仅能被用于临床的再生研究应用中,而且也能作为解析复杂性状和特征的独特平台,阐明其背后的基因和分子途径。为了实现这一目的,科学家们开发了多种遗传操控方法,但是这些方法依然存在各种问题,我们需要快速,具有可操控性的生物学手段。在这篇文章中,研究人员就利用CRISPR和TALEN,这两种备受关注的基因组编辑技术,研发出了一种人类多能干细胞基因组编辑平台。研究人员将这一平台称为iCRISPR。
iCRISPR能用于基因功能丧失研究中,快速,高效的敲除人体多能干细胞中的等位基因,也可以针对一些精确的疾病模型,通过特定的核苷酸变换,进行多能干细胞纯合体敲除。
通过进一步实验,研究人员验证了双重和三重基因敲除hPSC细胞系一步法的有效性,同时也证明了在多能干细胞分化过程中能进行阶段特异性诱导基因敲除,这对于发育生物学研究来说意义重大。
由此研究人员指出,iCRISPR平台尤其适合用于解析人类疾病研究中的复杂遗传相互作用,以及多效性基因功能,这将有助于进行人体多能干细胞高通量遗传分析。
除了这项研究之外,去年来自加州大学旧金山分校的研究人员提出了一个相似的名称:CRISPRi,他们发现当缺失核酸内切酶活性的Cas9与一种导向RNA共表达时候,会产生一种DNA识别复合物,这种复合物能特异性干扰转录延伸,RNA聚合酶结合,或转录因子结合。
由此研究人员研发出了这种CRISPRi系统,这一系统能有效抑制大肠杆菌中靶向基因的表达,并且不会出现脱靶效应。而且利用CRISPRi,还可以同时抑制多个靶基因,这种作用也是可逆。研究人员还证明,该系统也适用于哺乳动物细胞中的基因表达抑制(具体见:Cell重要成果:基因表达沉默新技术 )。
(生物通:张迪)
原文标题:
An iCRISPR Platform for Rapid, Multiplexable, and Inducible Genome Editing in Human Pluripotent Stem
Human pluripotent stem cells (hPSCs) offer a unique platform for elucidating the genes and molecular pathways that underlie complex traits and diseases. To realize this promise, methods for rapid and controllable genetic manipulations are urgently needed. By combining two newly developed gene-editing tools, the TALEN and CRISPR/Cas systems, we have developed a genome-engineering platform in hPSCs, which we named iCRISPR. iCRISPR enabled rapid and highly efficient generation of biallelic knockout hPSCs for loss-of-function studies, as well as homozygous knockin hPSCs with specific nucleotide alterations for precise modeling of disease conditions. We further demonstrate efficient one-step generation of double- and triple-gene knockout hPSC lines, as well as stage-specific inducible gene knockout during hPSC differentiation. Thus the iCRISPR platform is uniquely suited for dissection of complex genetic interactions and pleiotropic gene functions in human disease studies and has the potential to support high-throughput genetic analysis in hPSCs.