-
生物通官微
陪你抓住生命科技
跳动的脉搏
PNAS解析甲基化与重复基因
【字体: 大 中 小 】 时间:2014年04月09日 来源:生物通
编辑推荐:
研究人员发现,DNA甲基化可以保护重复基因,使其不会因为自然选择而淘汰。这样它们才能够在漫长的进化过程中,发展出新的细胞功能。
生物通报道:活细胞偶尔会在正常的复制过程中产生基因的额外拷贝。在漫长的生命发展史中,这些看起来多余的基因成为了适应性和多样性的来源,推动着生命的进化。现在,科学家们揭示了这些重复基因躲避自然选择,并在基因组中留存下来的分子机制,这一过程正是现代生命形成的基础。
研究人员发现,DNA甲基化可以保护重复基因,使其不会因为自然选择而淘汰。这样它们才能够在漫长的进化过程中,发展出新的细胞功能。
“我们首次向人们明确展示,DNA甲基化与重复基因的演化有关,”乔治亚理工学院的副教授Soojin Yi说。这项研究于四月七日发表在美国国家科学院院刊PNAS杂志上。
人类基因组中的基因至少有一半都是重复基因。这些重复基因不仅多余,还有可能损害细胞。由于绝大多数重复基因会高速累积突变,因此这些额外的基因拷贝很容易在自然选择之下慢慢失活甚至丢失。
研究团队发现,一些重复基因形成后不久,其调控区域就会被添上甲基化基团,阻止这些基因启动。这样的甲基化修饰可以保护这些基因免于自然选择,使其能够长期留在基因组中,最终被进化赋予新的功能。研究显示,一些年轻的重复基因,几乎在形成之后就立刻被甲基化所沉默。
“我们的研究指出,新形成的重复基因甲基化水平更高,”Yi说。
研究人员发现,在重复基因的调控区域,DNA甲基化的平均水平与进化时间呈显著的负相关。也就是说,越年轻的重复基因,拥有越高水平的DNA甲基化。
此外,大多数重复基因对(duplicate gene pairs)中的甲基化分布,在十种人类组织中相当一致,即甲基化水平高的那个重复基因在不同组织中始终保持更高水平的甲基化。“对于我们所检测的组织而言,重复基因对中的甲基化分布相当一致,”Keller说。
研究人员将人类基因组中的每个基因与其它序列进行比较,构建了包括所有人类重复基因的数据集。随后,他们在十种不同的人类组织中进行了DNA甲基化的检测,并通过计算机模型分析了DNA甲基化与重复基因之间的关联。
对于人类的大脑来说,重复基因对于组织的进化特别重要。下一步,研究人员将深入解析表观遗传学修饰与大脑进化有何联系。(推荐阅读:PNAS发布人类胎盘甲基化组)
生物通编辑:叶予
生物通推荐原文摘要:
DNA methylation and evolution of duplicate genes
The evolutionary mechanisms underlying duplicate gene maintenance and divergence remain highly debated. Epigenetic modifications, such as DNA methylation, may contribute to duplicate gene evolution by facilitating tissue-specific regulation. However, the role of epigenetic divergence on duplicate gene evolution remains little understood. Here we show, using comprehensive data across 10 diverse human tissues, that DNA methylation plays critical roles in several aspects of duplicate gene evolution. We first demonstrate that duplicate genes are initially heavily methylated, before gradually losing DNA methylation as they age. Within each pair, DNA methylation divergence between duplicate partners increases with evolutionary age. Importantly, tissue-specific DNA methylation of duplicates correlates with tissue-specific expression, implicating DNA methylation as a causative factor for functional divergence of duplicate genes. These patterns are apparent in promoters but not in gene bodies, in accord with the complex relationship between gene-body DNA methylation and transcription. Remarkably, many duplicate gene pairs exhibit consistent division of DNA methylation across multiple, divergent tissues: For the majority (73%) of duplicate gene pairs, one partner is always hypermethylated compared with the other. This is indicative of a common underlying determinant of DNA methylation. The division of DNA methylation is also consistent with their chromatin accessibility profiles. Moreover, at least two sequence motifs known to interact with the Sp1 transcription factor mark promoters of more hypomethylated duplicate partners. These results demonstrate critical roles of DNA methylation, as well as complex interaction between genome and epigenome, on duplicate gene evolution.