Cell发布再生医学重要发现

【字体: 时间:2014年04月28日 来源:生物通

编辑推荐:

  在以往的科学研究中来自德克萨斯大学西南医学中心的研究人员发现,新生动物的心脏具有完全的自愈能力,而成体心脏则丧失了这种能力。现在,同一研究小组揭示了在成年期心脏丧失其惊人再生能力的原因,答案很简单——氧气。

  

生物通报道  在以往的科学研究中来自德克萨斯大学西南医学中心的研究人员发现,新生动物的心脏具有完全的自愈能力,而成体心脏则丧失了这种能力。现在,同一研究小组揭示了在成年期心脏丧失其惊人再生能力的原因,答案很简单——氧气。

是的,就是氧气。众所周知,全身循环富含氧的血液是心脏的一个重要功能。但同时氧也是一种高度活化的非金属元素和氧化剂,可以非常容易地与其他的化合物形成有毒物质。现在研究人员发现是后一种特性造成了成体心脏丧失再生能力。

这一突破性的研究发现发表在4月24日的《细胞》(Cell)杂志上,证实富含氧气的后天环境导致了心肌细胞发生细胞周期阻滞。

研究的资深作者、德克萨斯大学西南医学中心内科助理教授Hesham Sadek博士说:“了解在新生儿中关闭心脏再生能力的这一关键机制,告诉了我们有可能如何找到一些方法重新唤醒成体哺乳动物心脏的这种能力。”

由于出生后立刻接触富含氧气的空气,心脏细胞建立起线粒体这一细胞的发电所来增加氧化作用。线粒体大量生成氧自由基损害DNA,最终造成了细胞周期阻滞。

Sadek博士说:“我们发现了以往未知的一个介导心肌细胞周期阻滞的保护机制,其是因氧依赖性有氧代谢而产生。”

Sadek博士说,从生理学上讲,哺乳动物可能不得不早期就在高效利用能量,或保留心脏的再生能力之间做出选择。“选择是明确的。相比于身体里任何的器官,心脏更需要高效利用能量来确保终身泵血。”

心肌中的线粒体量为全身最高,在休息状态时都要消耗身体30%的总氧量。不幸的是,大量耗氧生成能量是以DNA氧化使得心肌细胞无法分裂与再生为代价。

Sadek博士,与共同第一作者、儿科博士后实习生Bao "Robyn" Puente博士,以及内科自身访问学者Wataru Kimura发现,如果他们让小鼠置于低氧空气中,心肌细胞分裂时间比通常要长。而出生在高氧空气中的小鼠则相反。在这种情况下,心肌细胞比通常提早停止分裂。

在发表于2011年2月25日《科学》(Science)杂志上的一项研究中,Sadek博士曾发现,如果在出生后第一周切除小鼠的部分心脏,这部分会完全正确地重新生长出来。相反,成体心脏即便是切除少量组织也会造成不可逆的损伤(延伸阅读:Immunity:用免疫细胞来治愈受伤的心 )。

由于成年哺乳动物心脏不能够在损伤后再生,这成为了心血管医学的一个重要障碍。重新认识是什么导致了心肌细胞周期阻滞,有可能成为以心肌细胞增殖为基础的治疗方法一个重要的组成部分。

(生物通:何嫱)

生物通推荐原文摘要:

The Oxygen-Rich Postnatal Environment Induces Cardiomyocyte Cell-Cycle Arrest through DNA Damage Response

The mammalian heart has a remarkable regenerative capacity for a short period of time after birth, after which the majority of cardiomyocytes permanently exit cell cycle. We sought to determine the primary postnatal event that results in cardiomyocyte cell-cycle arrest. We hypothesized that transition to the oxygen-rich postnatal environment is the upstream signal that results in cell-cycle arrest of cardiomyocytes. Here, we show that reactive oxygen species (ROS), oxidative DNA damage, and DNA damage response (DDR) markers significantly increase in the heart during the first postnatal week. Intriguingly, postnatal hypoxemia, ROS scavenging, or inhibition of DDR all prolong the postnatal proliferative window of cardiomyocytes, whereas hyperoxemia and ROS generators shorten it. These findings uncover a protective mechanism that mediates cardiomyocyte cell-cycle arrest in exchange for utilization of oxygen-dependent aerobic metabolism. Reduction of mitochondrial-dependent oxidative stress should be an important component of cardiomyocyte proliferation-based therapeutic approaches.

 

相关新闻
生物通微信公众号
微信
新浪微博
  • 搜索
  • 国际
  • 国内
  • 人物
  • 产业
  • 热点
  • 科普

热搜:心脏|再生|氧气|

  • 急聘职位
  • 高薪职位

知名企业招聘

热点排行

    今日动态 | 人才市场 | 新技术专栏 | 中国科学人 | 云展台 | BioHot | 云讲堂直播 | 会展中心 | 特价专栏 | 技术快讯 | 免费试用

    版权所有 生物通

    Copyright© eBiotrade.com, All Rights Reserved

    联系信箱:

    粤ICP备09063491号