-
生物通官微
陪你抓住生命科技
跳动的脉搏
Cell子刊:选择性剪切影响癌细胞代谢
【字体: 大 中 小 】 时间:2013年06月04日 来源:生物通
编辑推荐:
Ludwig癌症研究所的Paul S. Mischel教授领导研究团队,发现单个基因突变会改变关键基因的剪切方式,影响脑癌细胞的代谢。该突变不仅能帮助脑癌细胞生存,还会使这些细胞长得更快,文章发表在Cell旗下的Cell Metabolism杂志上。
生物通报道:Ludwig癌症研究所的Paul S. Mischel教授领导研究团队,发现单个基因突变会改变关键基因的剪切方式,影响脑癌细胞的代谢。该突变不仅能帮助脑癌细胞生存,还会使这些细胞长得更快,文章发表在Cell旗下的Cell Metabolism杂志上。
单个基因可以通过选择性剪切,在切除或保留特定DNA片段的基础上,编码多种蛋白。在健康细胞中,选择性剪切是受到严格调控的正常生理活动。研究人员在多形性胶质母细胞瘤GBM中,对EGFRvIII基因的突变进行了研究,发现该基因突变引发了异常的选择性剪切事件。GBM是最常见也最具侵袭性的恶性脑瘤,在确诊后如果不进行治疗,患者的存活期只有不到五个月。即使采取标准的放疗和化疗措施,也只能将患者寿命延长至15个月左右。
研究人员发现,EGFRvIII突变引起的选择性剪切事件,会扰乱细胞正常代谢的调控。“在癌症中Warburg效应是一种常见的代谢紊乱,肿瘤细胞通过糖酵解能够以更高的效率吸收葡萄糖,为细胞供给更多能量促使其快速生长。我们针对这一现象进行了分析。”Mischel说,他也是加州大学的病理学教授。
研究揭示了一系列复杂而引人注目的事件,EGFRvIII突变影响了一个剪切因子HNRNPA1的表达,该因子介导的选择性剪切,生成了不同于正常形态的调控蛋白Max。研究人员将这种形式的Max蛋白称为Delta Max。
Max蛋白与MYC关系密切,而MYC会在癌症中促进肿瘤生长和Warburg效应。“与Max的常规形态不同,”Mischel说,“Delta Max会增强c-MYC的活性,促进肿瘤细胞中的糖酵解过程。”换句话说,EGFRvIII突变及之后的选择性剪切,给细胞代谢系统下达了命令,使其使用葡萄糖来帮助肿瘤快速生长。
研究人员强调,这一发现仅针对EGFRvIII突变和GBM,目前还无法确定其他癌基因是否也能够以类似方式引发选择性剪切。
Mischel认为,这项研究为人们带来了两个重要启示。第一,强调了EGFRvIII在GBM发病机理中的核心作用,该基因突变对于改变肿瘤细胞的代谢途径有关键性作用。第二,研究显示癌基因能够通过选择性剪切调节细胞代谢,这将为药物研发人员提供新的靶标,帮助他们在癌基因的基础上开发出新型药物。
(生物通编辑:叶予)
生物通推荐原文摘要:
EGFR Mutation-Induced Alternative Splicing of Max Contributes to Growth of Glycolytic Tumors in Brain Cancer
Alternative splicing contributes to diverse aspects of cancer pathogenesis including altered cellular metabolism, but the specificity of the process or its consequences are not well understood. We characterized genome-wide alternative splicing induced by the activating EGFRvIII mutation in glioblastoma (GBM). EGFRvIII upregulates the heterogeneous nuclear ribonucleoprotein (hnRNP) A1 splicing factor, promoting glycolytic gene expression and conferring significantly shorter survival in patients. HnRNPA1 promotes splicing of a transcript encoding the Myc-interacting partner Max, generating Delta Max, an enhancer of Myc-dependent transformation. Delta Max, but not full-length Max, rescues Myc-dependent glycolytic gene expression upon induced EGFRvIII loss, and correlates with hnRNPA1 expression and downstream Myc-dependent gene transcription in patients. Finally, Delta Max is shown to promote glioma cell proliferation in vitro and augment EGFRvIII expressing GBM growth in vivo. These results demonstrate an important role for alternative splicing in GBM and identify Delta Max as a mediator of Myc-dependent tumor cell metabolism.