清华杰青院士最新《Nature》文章

【字体: 时间:2009年06月05日 来源:Nature

编辑推荐:

  生物通报道,最新一期的Nature杂志在线版发布了清华大学生物科学与技术系吴嘉炜教授与王志新院士最新AMPK结构研究成果,Structural insight into the autoinhibition mechanism of AMP-activated protein kinase。

  

生物通报道,最新一期的Nature杂志在线版发布了清华大学生物科学与技术系吴嘉炜教授与王志新院士最新AMPK结构研究成果,Structural insight into the autoinhibition mechanism of AMP-activated protein kinase

 

这一文章的通讯作者是清华大学生物科学与技术系的国家杰出青年基金获得者吴嘉炜教授以及97年当选院士的王志新教授。二人均从事生物化大分子结构和功能研究。

 

磷酸腺苷(AMP)激活的蛋白激酶(AMP-activated protein kinaseAMPK)是一种在细胞内行使能量代谢调节的蛋白激酶。它主要的特征是能与AMP结合,通过AMP感知细胞的能量水平和代谢平衡水平来调节酶的活性。AMPK还对细胞生长,分化以及维持细胞极性具有重要的意义。这些重要的功能使得AMPK成为一个重要的药物靶位,针对肥胖,2型糖尿病和癌症。

 

然而,AMPKAMP结合的位点以及调节的机制一直不明,科学家们希望能透过结构更深入研究AMPK。王志新等人以Schizosaccharomyces pombe酵母为模型,研究了AMPKα亚基区域,这其中包含酶活性区域和自我抑制区域。

 

AMPK的这些结构和生物学数据让科研者初步地了解AMPK的工作活性,了解AMPK的异构机制,并且找到了AMPK的活性开关。

(生物通 小茜)

 

生物通推荐原文检索:Structural insight into the autoinhibition mechanism of AMP-activated protein kinase

Lei Chen1,3, Zhi-Hao Jiao1,3, Li-Sha Zheng2,3, Yuan-Yuan Zhang1, Shu-Tao Xie1, Zhi-Xin Wang1,2 & Jia-Wei Wu1

 

MOE Key Laboratory of Bioinformatics, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China

Institute of Biophysics and Graduate University, Chinese Academy of Sciences, Beijing 100101, China

These authors contributed equally to this work.

Abstract

The AMP-activated protein kinase (AMPK) is characterized by its ability to bind to AMP, which enables it to adjust enzymatic activity by sensing the cellular energy status and maintain the balance between ATP production and consumption in eukaryotic cells1, 2. It also has important roles in the regulation of cell growth and proliferation, and in the establishment and maintenance of cell polarity3. These important functions have rendered AMPK an important drug target for obesity, type 2 diabetes and cancer treatments4. However, the regulatory mechanism of AMPK activity by AMP binding remains unsolved. Here we report the crystal structures of an unphosphorylated fragment of the AMPK -subunit (KD-AID) from Schizosaccharomyces pombe that contains both the catalytic kinase domain and an autoinhibitory domain (AID), and of a phosphorylated kinase domain from Saccharomyces cerevisiae (Snf1-pKD). The AID binds, from the 'backside', to the hinge region of its kinase domain, forming contacts with both amino-terminal and carboxy-terminal lobes. Structural analyses indicate that AID binding might constrain the mobility of helix C, hence resulting in an autoinhibited KD-AID with much lower kinase activity than that of the kinase domain alone. AMP activates AMPK both allosterically and by inhibiting dephosphorylation5, 6. Further in vitro kinetic studies demonstrate that disruption of the KD-AID interface reverses the autoinhibition and these AMPK heterotrimeric mutants no longer respond to the change in AMP concentration. The structural and biochemical data have shown the primary mechanism of AMPK autoinhibition and suggest a conformational switch model for AMPK activation by AMP.

吴嘉炜 博士

教授,博导,国家杰出青年基金获得者

1990-1994,南京大学 学士

1994-1999,中国科学院生物物理研究所 博士

1999-2003,普林斯顿大学分子生物学系,博士后,研究助理

现为清华大学教授

 

主要科研领域与方向:

生物大分子的X-射线晶体学研究

分子结构基础上的蛋白质相互作用

蛋白质功能的物理化学研究

Selected Publications:

Chai J, Wu JW, Yan N, Massague J, Pavletich NP, Shi Y. Features of a Smad3 MH1-DNA complex. Roles of water and zinc in DNA binding. J Biol Chem. 2003 May 30; 278(22): 20327-31.

Wu JW, Krawitz AR, Chai J, Li W, Zhang F, Luo K, Shi Y. Structural mechanism of Smad4 recognition by the nuclear oncoprotein Ski: insights on Ski-mediated repression of TGF-beta signaling. Cell. 2002 Nov 1; 111(3): 357-67.

Wu JW, Hu M, Chai J, Seoane J, Huse M, Li C, Rigotti DJ, Kyin S, Muir TW, Fairman R, Massague J, Shi Y. Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling. Mol Cell. 2001 Dec; 8(6): 1277-89.

Wu JW, Cocina AE, Chai J, Hay BA, Shi Y. Structural analysis of a functional DIAP1 fragment bound to grim and hid peptides. Mol Cell. 2001 Jul; 8(1): 95-104.

Wu JW, Fairman R, Penry J, Shi Y. Formation of a stable heterodimer between Smad2 and Smad4. J Biol Chem. 2001 Jun 8; 276(23): 20688-94. Epub 2001 Mar 27.

Chai J, Du C, Wu JW, Kyin S, Wang X, Shi Y. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature. 2000 Aug 24; 406(6798): 855-62.

Wu JW, Wang ZX. New evidence for the denaturant binding model. Protein Sci. 1999 Oct; 8(10):2090-7.

Wu JW, Wang ZX. Activation mechanism and modification kinetics of Chinese hamster dihydrofolate reductase by p-chloromercuribenzoate. Biochem J. 1998 Oct 1; 335 (Pt 1): 181-9.

Wu JW, Wang ZX, Zhou JM. Inactivation kinetics of dihydrofolate reductase from Chinese hamster during urea denaturation. Biochem J. 1997 Jun 1; 324 (Pt 2): 395-401

 

王志新 博士

教授,博导

中科院院士

1977年,清华大学化学与化学工程系 学士

1988年,中国科学院生物物理研究所 博士

1997年当选中国科学院院士

2003年至今任清华大学教授

 

主要科研领域与方向:生物化学和结构生物学统计力学在酶学中的应用酶的抑制、激活作用机制及动力学酶活性不可逆修饰动力学蛋白质-配体相互作用蛋白质二级结构预测研究

 

Selected Publications:

Wang, Z.X. (1994) Assessing the accuracy of protein secondary structure. Nature Structural Biology, 1, 145-146.

Wang, Z.X., Wang, H.R., Zhou, H.M. (1995) Kinetics of inactivation of amino-acylase by 2-chloromercuri-4-nitrophenol: A new type of complexing inhibitor. Biochemistry, 34, 6863-6868.

Wang, Z.X. (1996) How many fold types of protein are there in nature? Proteins: Structure. Function and Genetics, 26, 186-191.

Wang, M.H., Wang, Z.X. and Zhao, K.Y. (1996) Kinetics of inactivation of bovine pancreatic ribonuclease A by bromopyruvic acid. Biochem. J., 320, 187-192.

Wu, J.W. and Wang, Z.X. (1998) Activation mechanism and modification kinetics of Chinese hamster dihydrofolate reductase by p-chloromercuribenzoate. Biochem. J., 335, 181-189.

Wang, Z.X. (1999) Influence of substrates on in vitro dephosphorylation of glycogen phosphorylase a by protein phosphatase-1. Biochem. J., 341, 545-554.

Wang, Z.X. and Yuan, Z. (2000) How good is the prediction of protein structural classes by the component-coupled method? Proteins: Structure, Function and Genetics, 38, 165-175.

Wang, Z.X. and Wu, J.W. (2002) Autophosphorylation kinetics of protein kinases. Biochem. J., 368, 947-952.

Wu, H., Zheng, Y. and Wang, Z.X. (2003) Evaluation of the catalytic mechanism of the p21-activated protein kinase PAK2. Biochemistry, 42, 1129-1139.

Wu, H. and Wang, Z.X. (2003) The mechanism of p21-activated protein kinase 2 autoactivation. J. Biol. Chem., 278, 41768-41778.

 

 

相关新闻
生物通微信公众号
微信
新浪微博
  • 搜索
  • 国际
  • 国内
  • 人物
  • 产业
  • 热点
  • 科普
  • 急聘职位
  • 高薪职位

知名企业招聘

热点排行

    今日动态 | 人才市场 | 新技术专栏 | 中国科学人 | 云展台 | BioHot | 云讲堂直播 | 会展中心 | 特价专栏 | 技术快讯 | 免费试用

    版权所有 生物通

    Copyright© eBiotrade.com, All Rights Reserved

    联系信箱:

    粤ICP备09063491号