-
生物通官微
陪你抓住生命科技
跳动的脉搏
活细胞研究新技术
【字体: 大 中 小 】 时间:2009年11月23日 来源:生物通
编辑推荐:
来自华盛顿大学蛋白组学技术和应用研究所的研究人员为了揭示一片活叶样品中初级和次级代谢产物的分布,克服样品本身厚度的困难,发现了一种活细胞研究新技术。
生物通报道:来自华盛顿大学蛋白组学技术和应用研究所的研究人员为了揭示一片活叶样品中初级和次级代谢产物的分布,克服样品本身厚度的困难,发现了一种活细胞研究新技术。
领导这一研究的是华盛顿大学分子生物学,生物化学和化学方面的专家Akos Vertes教授,他介绍说,了解细胞的内部成分是理解健康细胞不同于病变细胞的关键。直到现在,唯一的方法是观察单个细胞的内部,然后将其从动物或植物中移除,或者改变细胞的生存环境。但是这么做的话,会使细胞发生变化。科学家还不是很清楚一个细胞在病变时与健康细胞的差别,或者当它们从一个环境移到另一个环境中产生的变化。
因此Vertes等人希望能从另外一个方面来进行活细胞分析,在他们的一项关于活叶样品中初级和次级代谢产物分布的研究中,研究人员发现叶片中积累基质很厚,常导致光谱末端低分子量部分模糊,而且基质辅助激光解析电离(MALDI)质谱分析需要在真空中进行,但活体样本在真空中无法存活。
实际上,MALDI质谱分析的原理是将分析物分散在基质分子中并形成晶体,当用激光照射晶体时,由于基质分子经辐射所吸收的能量,导致能量蓄积并迅速产热,从而使基质晶体升华,致使基质和分析物膨胀并进入气相。而生物样品也可以直接吸收能量的,比如2.94mm波长的光能激活水中氢氧键。
因此,Vertes等人想到复合两种技术来解决这一问题。首先他们利用大气压红外线(an atmospheric pressure infrared,APIR)MALDI激光直接激活组织中的水分,使样品气化,就像是组织表面发生了细胞大小的核爆炸,从而获得了离子化微粒,进入质谱中进行分析。但是并不是所有的气化微粒都带电,大部分其实是不带电的,会被APIR MALDI遗漏。
为了捕捉这些中性粒子,Vertes等人采用了第二种方法:LAESI (laser ablation electrospray ionization,激光烧蚀电喷雾电离,生物通译),这种方法能捕捉大量带电微滴的微粒,然后重新电离化。通过对整个样品进行处理,复合这两种方法,就能覆盖更多的分子,分析质量更高。
与大部分质谱成像过程不同,Verte的方法还在成像中增加了高度,从而实现了3D代谢物成像。这项技术的分辨率是直径10mm,高度30mm,这与生物天然的立体像素相吻合,这样科学家们就可以获得天然构像。
(生物通:万纹)
附:
基质辅助激光解吸附质谱技术
基质辅助激光解吸附质谱技术(MatriX AssistedLaser Desorption /Ionization,MALDI)的基本原理是将分析物分散在基质分子中并形成晶体,当用激光照射晶体时,由于基质分子经辐射所吸收的能量,导致能量蓄积并迅速产热,从而使基质晶体升华,致使基质和分析物膨胀并进入气相。MALDAI所产生的质谱图多为单电荷离子,因而质谱图中的离子与多肽和蛋白质的质量有—一对应关系。
MALDI产生的离子常用飞行时间(Time-of-Flight,TOF)检测器来检测,理论上讲,只要飞行管的长度足够,TOF检测器可检测分子的质量数是没有上限的,因此MALDI-TOF质谱很适合对蛋白质、多肽、核酸和多糖等生物大分子的研究。