-
生物通官微
陪你抓住生命科技
跳动的脉搏
裴钢院士最新《Nature》文章
【字体: 大 中 小 】 时间:2009年01月06日 来源:生物通
编辑推荐:
中国科学院上海生命科学研究院生物化学与细胞生物学研究所,上海交通大学附属第六人民医院,同济大学等处的研究人员揭示了胰岛素耐受/II型糖尿病发生的新机制,并提示了潜在的药物治疗新方法。这一研究成果公布在1月4日的《Nature》在线版上。
生物通报道:来自人民网-科技频道的消息,中国科学院上海生命科学研究院生物化学与细胞生物学研究所,上海交通大学附属第六人民医院,同济大学等处的研究人员揭示了胰岛素耐受/II型糖尿病发生的新机制,并提示了潜在的药物治疗新方法。这一研究成果公布在1月4日的《Nature》在线版上。
领导这一研究的是现任同济大学校长的裴钢院士,裴钢院士主要从事细胞信号转导研究,是中国科学院院士、第三世界科学院院士,曾先后获得过求是科技基金会“杰出青年学者奖”、何梁何利科技进步奖、国家自然科学二等奖、上海市自然科学一等奖。在就任同济大学校长之前,裴钢担任中科院上海生命科学研究院院长,现为中国细胞生物学会理事长、亚太细胞生物学组织主席、中药全球化联盟副主席、“发育与生殖研究”重大科学研究计划专家组组长。文章其他作者包括:栾冰,赵简等。
糖尿病是一种常见的慢性非传染性疾病,由人体内胰岛素缺乏或耐受所致。糖尿病可分为Ⅰ型糖尿病、Ⅱ型糖尿病等,其中Ⅱ型糖尿病最为常见,约占总病患数的90%。Ⅰ型糖尿病患者体内只能产生少量或不能产生胰岛素;Ⅱ型糖尿病的特点是胰岛素耐受,即患者自身能够产生足量胰岛素,但机体细胞无法对它作出反应。糖尿病对人体健康有着巨大危害,可导致心血管疾病、血脂异常、失明、肾功能衰竭和截肢等严重的并发症。据报道,目前全球糖尿病患者已经超过2.5亿人,在20年内就可能增至3.8亿人。全球每10秒钟就有2人被诊断为新发糖尿病,1人死于糖尿病相关性疾病,每30秒就有1人因糖尿病而截肢。糖尿病已成为导致全球人口死亡的第四大疾病。我国糖尿病患者已超过2000万,每年新增病人近100万,预计中国糖尿病人数到2025年接近4000万,跃居世界第一。目前世界各国每年为治疗糖尿病需要花费至少1530亿美元,到2025年,这一数字可能翻一番。糖尿病造成的经济损失甚至可能大于 “世纪瘟疫”艾滋病。
据专家介绍,在正常情况下,胰岛素能够激活肌肉、肝脏、脂肪组织中的胰岛素信号通路,从而达到降低血糖的功能。但在II型糖尿病病人中,胰岛素的这一重要功能受损,外周组织(如肌肉,肝脏,脂肪组织等)对胰岛素敏感性下降,也即胰岛素耐受,从而直接导致II型糖尿病的发生。胰岛素耐受及II型糖尿病的发病分子机制至今尚不清楚,世界各大医药研发机构和制药公司一直以来都在寻求预防和治疗II型糖尿病的有效方案。由中国科学院院士裴钢领导的研究组经过长期研究,发现一种具有多重功能的信号蛋白β-arrestin 2能与胰岛素受体形成信号转导复合体,β-arrestin 2是这一信号复合体的结构核心,它将上游的胰岛素受体和下游的激酶信号分子偶联起来,从而促进了机体对胰岛素的敏感性, β-arrestin 2水平的降低或功能缺失,致使该信号复合体不能正常形成,直接导致了胰岛素耐受和II型糖尿病的发生。 裴钢院士领导的研究组及他们的合作者发现II型中,β-arrestin 2表达显著降低,而补充β-arrestin 2可以有效缓解糖尿病模型小鼠胰岛素耐受和II型糖尿病的症状。
该项研究不仅揭示了胰岛素耐受和II型糖尿病发生的新机制,并且为胰岛素耐受及II型糖尿病的治疗提供了可借鉴的新策略,提示β-arrestin 2蛋白及β-arrestin 2蛋白/胰岛素受体复合体有望成为研发胰岛素耐受相关的代谢性疾病治疗药物的新靶点。
(生物通:万纹)
原文摘要:
Deficiency of a -arrestin-2 signal complex contributes to insulin resistance
Insulin resistance, a hallmark of type 2 diabetes, is a defect of insulin in stimulating insulin receptor signalling1, 2, which has become one of the most serious public health threats. Upon stimulation by insulin, insulin receptor recruits and phosphorylates insulin receptor substrate proteins3, leading to activation of the phosphatidylinositol-3-OH kinase (PI(3)K)–Akt pathway. Activated Akt phosphorylates downstream kinases and transcription factors, thus mediating most of the metabolic actions of insulin4, 5, 6. -arrestins mediate biological functions of G-protein-coupled receptors by linking activated receptors with distinct sets of accessory and effecter proteins, thereby determining the specificity, efficiency and capacity of signals7, 8, 9, 10, 11. Here we show that in diabetic mouse models, -arrestin-2 is severely downregulated. Knockdown of -arrestin-2 exacerbates insulin resistance, whereas administration of -arrestin-2 restores insulin sensitivity in mice. Further investigation reveals that insulin stimulates the formation of a new -arrestin-2 signal complex, in which -arrestin-2 scaffolds Akt and Src to insulin receptor. Loss or dysfunction of -arrestin-2 results in deficiency of this signal complex and disturbance of insulin signalling in vivo, thereby contributing to the development of insulin resistance and progression of type 2 diabetes. Our findings provide new insight into the molecular pathogenesis of insulin resistance, and implicate new preventive and therapeutic strategies against insulin resistance and type 2 diabetes.