陈俊杰教授《Cell》解析癌症新研究

【字体: 时间:2007年12月05日 来源:生物通

编辑推荐:

  来自耶鲁大学医学院治疗放射学系,麻省理工癌症研究中心,Mayo临床医学院(Mayo Clinic College of Medicine),密歇根大学医学院等处的研究人员发现了一个新的DNA损伤应答蛋白,这个蛋白介导了许多信号途径,在细胞对于遗传毒性压力的应答方面扮演着一个关键的角色。这对于深入理解DNA损伤信号途径,以及癌症研究等方面具有重要的意义。

  

生物通报道:细胞内的正常代谢活动会引起DNA损伤,这个速率是每个细胞每天50,000至500,000处分子损害,如果一个关键的癌症相关基因受到未修复的损伤将给机体带来灾难性的后果,因此DNA损伤一直以来也是癌症研究的一个重要方面。来自耶鲁大学医学院治疗放射学系,麻省理工癌症研究中心,Mayo临床医学院(Mayo Clinic College of Medicine),密歇根大学医学院等处的研究人员发现了一个新的DNA损伤应答蛋白,这个蛋白介导了许多信号途径,在细胞对于遗传毒性压力的应答方面扮演着一个关键的角色。这对于深入理解DNA损伤信号途径,以及癌症研究等方面具有重要的意义。

这一研究成果公布在最新一期的《Cell》杂志上,文章的通讯作者是来自耶鲁大学医学院的陈俊杰教授,其早年毕业于复旦大学遗传与遗传工程系。

以DNA为模板按碱基配对进行DNA复制是一个严格而精确的事件,但也不是完全不发生错误的。碱基配对的错误频率约为10-1-10-2,在DNA复制酶的作用下碱基错误配对频率降到约10-5-10-6,复制过程中如有错误的核苷酸参入,DNA聚合酶还会暂停催化作用,以其3’→5’外切核酸酶的活性切除错误接上的核苷酸,然后再继续正确的复制,这种校正作用广泛存在于原核和真核的DNA聚合酶中,可以说是对DNA复制错误的修复形式,从而保证了复制的准确性。

目前对真核细胞的DNA修复的反应类型、参与修复的酶类和修复机制了解还不多,但DNA损伤修复与细胞突变、寿命、衰老、肿瘤发生、辐射效应、某些毒物的作用都有密切的关系。人类遗传性疾病已发现4000多种,其中不少与DNA修复缺陷有关,这些DNA修复缺陷的细胞表现出对辐射和致癌剂的敏感性增加。

在体内,DNA损伤信号利用了许多翻译后修饰作为分子开关,用于细胞周期检测点,DNA修复,细胞衰老和程序性死亡的调控。虽然在这一方面进行的研究很多,但是科学家们仍然对于DNA损伤应答没有获得细致深入的了解。

在这篇文章中,研究人员发现RNF8——一个FHA/RING结构域包含蛋白,在早期DNA损伤应答中扮演着一个关键的角色。他们在获得了FHA结构域结构的X射线晶体结构(1.35 Å)之后,经分析发现RNF8有利于检测点介导蛋白BRCA1和53BP1在损伤染色体上的积累,这主要通过两个方面,一方面是磷酸依赖性FHA位点介导的RNF8结合到MDC1上,另一方面则是通过RNF8在H2AX及其它损伤位点底物的泛素化过程中的作用。

而且研究人员也发现RNF8敲除的细胞存在G2/M检测点缺陷,并且IR敏感性增加。总而言之,这些研究结果都说明RNF8是一种新DNA损伤应答蛋白,介入了蛋白磷酸化及泛素信号途径,在细胞对于遗传毒性压力的应答方面扮演着一个关键的角色。
(生物通:张迪)

濡ょ姷鍋涢悘婵嬪箟閿燂拷 “精益生产小达人”争霸赛有奖互动

原文摘要:
Cell, Vol 131, 901-914, 30 November 2007
RNF8 Transduces the DNA-Damage Signal via Histone Ubiquitylation and Checkpoint Protein Assembly
Abstract

附:
Junjie Chen, PhD
Professor, Department of Therapeutic Radiology
junjie.chen@yale.edu

Yale University School of Medicine
Department of Therapeutic Radiology

Degrees/Education:
B.S., Genetics and Genetic Engineering, Fudan University, Shanghai, People’s Republic of China (1988)
Ph.D., Cell and Molecular Biology Program, University of Vermont (1994)
Post Doctoral Fellow, Department of Cancer Biology, Dana Farber Cancer Institute, Harvard Medical School (1996)
Post Doctoral Fellow, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School (1999)

Faculty Appointments:
Assistant Professor, Mayo Clinic College of Medicine, Biochem/Molecular Biology (dates-from-1999 to 2003)
Associate Professor, Mayo Clinic College of Medicine, Pharmacology (dates- from-2004 to 2006)
Professor, Yale University School of Medicine, Therapeutic Radiology (2006-present)

Certifications/Honors:
DOD breast cancer research career Development award
DOD Breast Cancer Research Program-Era of Hope Scholar Award

Research Interests:
We are interested in the molecular mechanisms that control genomic stability, tumor suppression and longevity.

Genomic instability is a common feature of all human cancers. The maintenance of genomic integrity following DNA damage depends on the coordination of the DNA repair system and cell cycle checkpoint controls. Similar to mitogenic signaling pathways, the DNA damage-induced signaling pathway consists of kinase-dependent signaling cascades that regulate cell cycle progression, DNA repair and apoptosis following DNA damage. It is the coordination of these events that ensures genomic stability. We have just begun to understand how this coordination is accomplished in mammalian cells.

ATM (ataxia telangiectasia mutated protein) and ATR (ataxia telangiectasia-related protein), two phosphatidylinositol 3-kinase-related protein kinases, are essential components in this DNA damage-signaling pathway. ATM and ATR activate the downstream checkpoint kinases Chk1 and Chk2/Cds1. Collectively, these four protein kinases phosphorylate a number of downstream effector proteins, including tumor suppressors p53 and BRCA1, where they coordinate DNA repair, cell cycle progression, transcriptional regulation and apoptosis in response to various DNA-damaging events. By focusing on several key regulators (ATM, 53BP1, Chk2, MDC1 and BRCA1) in this pathway and using biochemical and genetic approaches, we attempt to understand the roles of this DNA damage pathway in tumorigenesis and in anti-tumor therapy.

In the last two years, we have also our interests to the roles of mitotic checkpoint control and telomere maintenance in genomic instability. Additionally, we have ongoing research pursuing the link between DNA damage/repair, the regulation of chromatin structures and aging. Overall, the lab is interested in the pathways that control genomic stability and how the dysregulation of these pathways contributes to cancer, aging and other common illnesses.
 

婵炴垶鎸搁鍫澝归崶鈹惧亾閻熼偊妲圭€规挸瀛╃€靛ジ鏁傞悙顒佹瘎闁诲孩绋掗崝鎺楀礉閻旂厧违濠电姴娲犻崑鎾愁潩瀹曞洨鐣虹紓鍌欑濡粓宕曢鍛浄闁挎繂鐗撳Ο瀣煙濞茶骞橀柕鍥ㄥ哺瀵剟骞嶉鐣屾殸闂佽偐鐡旈崹铏櫠閸ф顥堥柛鎾茬娴狀垶鏌曢崱妤婂剱閻㈩垱澹嗗Σ鎰板閻欌偓濞层倕霉閿濆棙绀嬮柍褜鍓氭穱铏规崲閸愨晝顩烽柨婵嗙墦濡鏌涢幒鎴烆棡闁诲氦濮ょ粚閬嶅礃椤撶姷顔掗梺璇″枔閸斿骸鈻撻幋锔藉殥妞ゆ牗绮岄埛鏍煕濞嗘劕鐏╂鐐叉喘閹秹寮崒妤佹櫃

10x Genomics闂佸搫鍊瑰姗€骞栭—娓媠ium HD 閻庢鍠掗崑鎾绘煕濮樼厧鐏犵€规洜鍠撶槐鎺楀幢濮橆剙濮冮梺鍛婂笒濡粍銇旈幖浣瑰仢闁搞儮鏅滈悾閬嶆煕韫囧濮€婵炴潙妫滈妵鎰板即閻樼數鐓佺紓浣告湰濡炶棄螞閸ф绀嗛柛鈩冡缚閳ь兛绮欓弫宥夋晸閿燂拷

濠电偛妫庨崹鑲╂崲鐎n偆鈻旈悗锝庡幗缁佺櫉wist闂侀潧妫楅敃锝囩箔婢舵劕妫樻い鎾跺仜缂嶄線鏌涢弽銊у⒈婵炲牊鍘ISPR缂備焦绋掗惄顖炲焵椤掆偓椤︿即鎮ч崫銉ゆ勃闁逞屽墴婵″鈧綆鍓氶弳鈺呮倵濞戞瑥濮冮柛鏃撴嫹

闂佸憡顨嗗ú婊呭垝韫囨稒鍤勯柣鎰嚟閵堟挳骞栭弶鎴犵闁告瑥妫濆濠氬Ω閵夛絼娴烽柣鐘辩劍瑜板啴鎮ラ敓锟� - 濠电儑绲藉畷顒勫矗閸℃ḿ顩查柛鈩冾嚧閹烘挾顩烽幖杈剧秵閸庢垵鈽夐幘顖氫壕婵炴垶鎼╂禍婊冪暦閻旇櫣纾奸柛鈩冭壘閸旀帡鎮楅崷顓炰槐闁绘稒鐟ч幏瀣箲閹伴潧鎮侀梺鍛婂笧婢ф寮抽悢鐓庣妞ゆ柨鐏濈粣娑㈡煙鐠ㄥ鍊婚悷銏ゆ煕濞嗘ê鐏ユい顐㈩儔瀹曠娀寮介顐e浮瀵悂鏁撻敓锟�

婵炴垶鎸搁鍫澝归崶顒€违濠电姴瀚惌搴ㄦ煠瀹曞洤浠滈柛鐐存尦閹藉倻鈧綆鍓氶銈夋偣閹扳晛濡虹紒銊у閹峰懎饪伴崘銊р偓濠氭煛鐎n偄濮堥柡宀€鍠庨埢鏃堝即閻樿櫕姣勯柣搴㈢⊕閸旀帡宕濋悢鐓幬ラ柨鐕傛嫹

相关新闻
    生物通微信公众号
    微信
    新浪微博
    • 搜索
    • 国际
    • 国内
    • 人物
    • 产业
    • 热点
    • 科普
    • 急聘职位
    • 高薪职位

    知名企业招聘

    今日动态 | 人才市场 | 新技术专栏 | 中国科学人 | 云展台 | BioHot | 云讲堂直播 | 会展中心 | 特价专栏 | 技术快讯 | 免费试用

    版权所有 生物通

    Copyright© eBiotrade.com, All Rights Reserved

    联系信箱:

    粤ICP备09063491号