Pyrosequencing技术及其在DNA测序和SNP研究中的应用[创新技巧]

【字体: 时间:2003年03月31日 来源:生物通

编辑推荐:

  

生物通特约作者:黄文晋博士

[摘要]Pyrosequencing是新一代DNA序列分析技术,基于该技术的分析系统结合相应软件和试剂可以进行DNA序列分析,SNP分析和SNP频率确定。本文介绍了Pyrosequencing技术的原理和应用。

[关键词] Pyrosequencing DNA序列分析 SNP分析

    DNA序列分析技术是现代生命科学研究的核心技术之一,而双脱氧核苷酸链终止法(Sanger法)是目前使用最普遍的DNA序列分析技术。在基于Sanger法的全自动DNA测序技术中,测序反应产生的DNA片段是荧光标记的,这些片段经过平板胶电泳或毛细管电泳得到分离,荧光分子被激发而发光,发出的光信号被检测系统检测。Sanger法的优势在于可以分析未知DNA的序列,且单向反应的读序能力较长,目前的技术可以达到1000bp以上。

    在实际工作中,很多情况需要对已知序列的DNA片段进行序列验证,而这种分析往往测几十bp就可以满足需要.在这种情况下,Sanger法未必是最合适的DNA序列分析技术。新发展的Pyrosequencing(焦磷酸测序)技术应该是目前最适合这些应用的DNA序列分析技术。

    Pyrosequencing技术是新一代DNA序列分析技术,该技术对DNA的序列分析无须进行电泳,DNA片段无须荧光标记,因此相应的仪器系统无须荧光分子的激发和检测装置.本文将就Pyrosequencing技术的原理和应用进行介绍和讨论.

一、Pyrosequencing技术的原理

    首先通过PCR制备待测序的DNA模板,PCR的引物之一是用生物素标记的。PCR产物和偶连avidin的Sepharose微珠孵育,DNA双链经碱变性分开;纯化得到含生物素标记引物的待测序单链,并和测序引物结合成杂交体。

    Pyrosequencing技术是由四种酶催化的同一反应体系中的酶级连反应,四种酶是:DNA聚合酶(DNA polymerase)、硫酸化酶(ATP sulfurylase)、荧光素酶(luciferase)和双磷酸酶(apyrase).反应底物为adenosine 5´ phosphosulfate (APS)、荧光素(luciferin)。反应体系还包括待测序DNA单链和测序引物。反应体系配置好后就可以加入底物dNTP进行序列分析了。

    测序反应是这样进行的:在每一轮测序反应中,只能加入四种dNTP(dATP S,dTTP,dCTP,dGTP)之一,如该dNTP与模扳配对,聚合酶就可以催化该dNTP掺入到引物链中并释放焦磷酸基团(PPi)。掺入的dNTP和释放的焦磷酸是等摩尔数目的.注意:反应时deoxyadenosine alfa-thio triphosphate (dATP S)是dATP的替代物,因为DNA聚合酶对dATP S的催化效率比对dATP的催化效率高,且dATP S不是荧光素酶的底物。

    硫酸化酶催化APS和PPi形成ATP,ATP和焦磷酸的摩尔数目是一致的。ATP驱动荧光素酶介导的荧光素向氧化荧光素(oxyluciferin)的转化,氧化荧光素发出与ATP量成正比的可见光信号。光信号由CCD摄像机检测并由pyrogram™反应为峰。每个峰的高度(光信号)与反应中掺入的核苷酸数目成正比。ATP和未掺入的dNTP由双磷酸酶降解,淬灭光信号,并再生反应体系。然后就可以加入下一种dNTP。过程见图1 Pyrosequencing技术的原理: 随着以上过程的循环进行,互补DNA链合成,DNA序列由Pyrogram的信号峰确定。

 

 

 

 


    商品化的Pyrosequncing试剂盒通过以下几点来保证反应的有效进行:底物浓度已最佳化,高质量的三磷酸腺苷双磷酸酶保证了所有的dNTP被降解,包括ATP和dATPαS;dNTP降解速率慢于掺入速率,有利于dNTP充分掺入;ATP合成速率快于ATP水解速率,使的ATP浓度和光产生正比于掺入的dNTP数目。

    有必要指出的是:Pyrosequencing技术可以确定一个模板的20-30bp的序列。有的研究者经过改进而使该技术的读序长度增加一倍以上[1]。

    为了增加信噪比,在Pyrosequencing技术中,用dATPαS取代dATP,因为dATPαS可以比dATP被DNA聚合酶更有效利用,也更有利于阅读富含T的区域,且dATPαS不是荧光素酶的底物。但dATPαS是两种异构体SpdATPαS和RpdATPαS的混合物,聚合酶只能利用SpdATPαS。因此,为了得到最佳反应效率,必需使反应体系中保持最佳浓度的SpdATPαS,但同时增加了相应浓度的无用的RpdATPαS。dATPαS被双磷酸酶降解后的产物是双磷酸酶的抑制剂,所以随着反应进行,被双磷酸酶降解的dATPαS的降解产物浓度越来越大,双磷酸酶的活性越来越低。这可能是Pyrosequencing技术测序长度很短(20-30bp)的主要原因之一。新的革新就在于在反应体系中只加入SpdATPαS,这样一来可以大大降低dATPαS降解产物的浓度,维持双磷酸酶较长时间的活性。目前这个革新可以使Pyrosequencing技术的测序长度增加最少一倍,达到50至上百bp。

二, Pyrosequencing技术在DNA测序和SNP研究中的应用:
    Pyrosequencing是新一代DNA序列分析技术,因此该技术的第一个应用是DNA序列分析,基于该技术的分析系统配合相应软件还可以进行基于DNA序列分析的已知SNP的分析和SNP频率确定。

    Pyrosequencing技术对DNA片段的序列分析的读序长度有限,但这并不影响其在生命科学研究中的价值.我们知道,在很多场合中,我们对DNA序列分析的要求是读序越长越好,比如诸如人类基因组计划的工作,而在很多场合中,读序长度并不是主要指标,读序精确和能说明问题是主要指标,比如分子临床诊断领域,对细菌和其他病原微生物的分子诊断,只需对最能代表该微生物的DNA片段进行分析即可,最能代表该微生物的DNA片段往往也就十几到几十bp。可以提供序列资料的分子诊断是分子诊断的黄金标准,其权威性比其他DNA分析方法如NORTHERN,基因芯片和定量RT-PCR技术更好。

    SNP研究大致分为两个部分,一是SNP数据库的建立,二是SNP功能的研究。一种生物的所有SNP的数据库的建立是一件很大的工程,可以承担该工作的是那些具有大规模基因组测序能力的研究单位,而且数据库的建立很大程度上依赖Sanger法测序。但众所周知,如果不研究每个SNP的功能,数据库的建立即SNP的发现就没有多大意义。对已发现的SNP的功能的研究,有两个工作是必须的,一是SNP频率分析,一是SNP位点的碱基种类的证实.对于前者,Pyrosequencing是这样进行的:假设研究者手中有若干份来自不同个体的基因组DNA样品,要测这些不同样品的同一SNP的频率,那么研究者可以混合这些样本的基因组DNA,然后做一次PCR,进行一次测序,研究者就可以得到该SNP在这些样本中的频率.如果研究者已经有了各个样本的PCR产物,也可以将PCR产物混合后进行一次PYRO,就可以知道该SNP频率.已有的文献已经做过高达1126样本的PCR产物的混合来确定SNP的频率[2]。这种做法极大地减少了研究者的实验次数和实验消耗。一些其他研究也利用Pyrosequencing技术来确定SNP频率[3,4]。如果是SNP位点的碱基种类的证实,需要首先得到特定SNP所在DNA片段,即PCR产物,然后在SNP位点的上游和/或下游设计测序引物,这样通过对十几个bp序列测定来确定SNP位点的碱基种类及SNP位点上下游十几个碱基的序列.诸如四倍体马铃薯的一些SNP分析[5]和用于法医研究的线粒体DNA SNP分析[6]也是利用Pyrosequencing技术进行的。

    下面我们以炭疽热和幽门螺旋杆菌的分子诊断来具体说明Pyrosequencing技术在DNA序列分析和SNP研究中的应用。

    细菌鉴定有很多方法,如表型表达(phenotypic expression), 生物化学技术等.如果考虑操作费时和技术复杂,目前很多对细菌鉴定的方法并非最佳化。诸如引起肺结核的分支杆菌,其生长缓慢,经常要培养几周才能得到供生物化学分析,鉴定和株系/亚种分型(subtyping)的纯净培养物。通过传统的培养和生物化学分析方法对其检测和鉴定费时且费用大,影响医生给予患者最合适的治疗。因为如果不能对细菌进行快速精确的鉴定,医生只能给患者开广谱抗生素,因而引发无效治疗和细菌耐药性。

    随着分子生物学的发展,对细菌的分子诊断技术正在成熟.DNA所包含的遗传信息决定了不同种生物之间以及同种生物的不同亚种/株系之间的差异。因此分子诊断对细菌的分型比传统方法更为准确。对DNA的分析方法也有很多,如定量PCR,杂交(包括基因芯片)和DNA序列分析等。而只有DNA序列分析是黄金标准.很显然,DNA包含的遗传信息存在于DNA的ATCG排列次序中,搞清ATCG排列次序对DNA分析来说就是终结指标。如对诸如16S rRNA和内源RNAse P (endoribonuclease P, RNase P)基因的序列分析可以判断很多不同种类细菌或同种细菌的不同亚种/株系。

    土壤细菌Bacillus anthracis (B.anthracis)是引起炭疽热严重感染的病原细菌。从接触病原体到症状最初出现的感染发展过程一般为1到6天。如果确认受到B. anthracis攻击,利用抗生素或解毒剂可以防治其感染,因此快速鉴定病原微生物种类和其致病力状态具有很重要的意义。在接触病原体的起初24-48小时内摄入抗生素可以防治其传染.抗体检测的诊断方法可能比病情进展稍微滞后,而在这个时期的防治可能是失败的。

    被称为Ba813的一段DNA序列是B.anthracis的一个特异染色体标记,是B. anthracis区别于与其紧密相关的其他土壤杆菌种的标志。 Ba813长度为277bp,在染色体上为单拷贝[7]. 16S rRNA基因的序列分析被用于细菌分型,但不能用来分析B.anthracis,因为B. anthracis与B.cereus具有一样的16S rRNA序列。

    B.anthracis的致病菌株有两个质粒,pXO1含炭疽热毒素产生的基因( lef,cya,pag). pXO2编码包装和孢子形成所必须的产物[7]。目前,通过DNA杂交来检测这些特异致病因子是鉴定B.anthracis的主要手段[7,8]。然而由于缺少一个或两个质粒的非致病菌株可能来自致病菌株[8],因此此方法即不完全可靠又不快速。其他费时的方法包括gamma phage sensitivity tests和carbohydrate profiles[7]。

    本研究试图建立新的鉴定B. anthracis及其致病状态的方法,即利用Pyrosequencing技术分析PCR扩增的Ba813的20bp的序列来鉴定B. anthracis,并通过分析lef和位于pXO2的cap的基因序列来确定B. anthracis的致病状态。

    提取B. anthracis的质粒和染色体DNA,设计三对引物,分别扩增Ba813中的129 bp, lef基因的177 bp, cap基因的127 bp。每对引物的其中一条用生物素标记。

    采用偶连streptavidin的微珠(Streptavidin Sepharose™ HP, Amersham Biosciences AB, Sweden)和PSQ™ 96 Sample Preparation Kit (Pyrosequencing AB) 及其相关方法将PCR双链分离,转移至PSQ 96 SQA Plate的含生物素引物的单链PCR产物和测序引物退火。

    利用测序试剂盒SQA Reagent Kits (Pyrosequencing AB)和PSQ 96 DNA分析系统进行序列分析,结果用SQA软件进行分析。

    通过对来自Swedish Defence Research Agency的13个B. anthracis分离物的Ba813的20bp片段的序列分析,其中12个分离物被明确鉴定为B. anthracis (Table 1),另外一个由于PCR的失败而被排除.同时也检测了质粒(Table 1). SQA软件精确分析了11个分离物的核苷酸序列(大于等于20bp).其中一个序列的AA被错读为AAA,但这并不影响对细菌的鉴定.菌株鉴定的序列分析的精确度为99.6% (Table 2),而致病力鉴定的序列分析的精确度为100% (Table 2)。

    因此,利用PCR和Pyrosequencing技术的序列分析提供了一个可靠的鉴定Bacillus anthracis及其致病力的快速简单的方法。与其他方法相比,此方法速度快,几个小时出结果,而且结果精确。

    幽门螺旋杆菌与胃炎,胃溃疡和胃癌都相关,对该细菌的分子诊断有三个方面。一是确定待检病原体是否为幽门螺旋杆菌.通过分析待检样品是否含GCGCAATCAGCGTCAGT就可以解决该问题,这段序列是幽门螺旋杆菌16S rRNA基因中的一段,是幽门螺旋杆菌区别于相关细菌的重要标志[9,10]。幽门螺旋杆菌分子诊断的第二个内容是幽门螺旋杆菌是否具有耐药性.23S rRNA基因的两个碱基的变异(A2142G和A2143G)与该细菌对抗生素Clarithromycin的耐受相关[11].第三个分子诊断内容是评估感染该细菌的个体发展为胃癌的可能性,是通过分析IL-1B基因的三个SNP (-511C/T,-31C/T,+3954C/T)[12]。更详细的资料请参考以下文章:

Pyrosequencing技术在分子诊断方面的应用举例

参考文献
[1] Gharizadeh B Nordstrom T Ahmadian A et al Long-read pyrosequencing using pure 2’-deoxyadenosine-5’-O’-(1-thiotriphosphate) Sp-isomer. Anal Biochem. 2002 301(1):82-90.
[2] Nordfors L
Jansson M Sandberg G et al Large-scale genotyping of single nucleotide polymorphisms by Pyrosequencingtrade mark and validation against the 5’nuclease (Taqman((R))) assay. Hum Mutat. 2002 19(4):395-401.
[3] Wasson J
Skolnick G Love-Gregory L et al Assessing allele frequencies of single nucleotide polymorphisms in DNA pools by pyrosequencing technology. Biotechniques. 2002 32(5):1144-1150.
[4] Neve B
Froguel P Corset L et al Rapid SNP allele frequency determination in genomic DNA pools by pyrosequencing. Biotechniques. 2002 32(5):1138-1142.
[5] Rickert AM
Premstaller A Gebhardt C et al Genotyping of Snps in a polyploid genome by pyrosequencing. Biotechniques. 2002 32(3):592-600.
[6] Andreasson H
Asp A Alderborn A et al Mitochondrial sequence analysis for forensic identification using pyrosequencing technology. Biotechniques. 2002 32(1):124-133.
[7]Ramisse V
Identification and characterization of Bacillus anthracis by multiplex PCR analysis of sequences on plasmids pXO1 and pXO2 and chromosomal DNA. FEMS Microbiol. Letters 1996 145:9-16.
[8]Turnbull PCB
Bacillus anthracis but not always anthrax. J. Appl. Bacteriol. 1992 72:21-28.
[9] Weiss J
Comparison of PCR and other diagnostic techniques for detection of Helicobacter pylori infection in dyspeptic patients. J. Clin. Microbiol. 1994 32 (7) 1663-1668.
[10] Eckloff BW
A comparison of 16S ribosomal DNA sequences from five isolates of Helicobacter pylori. Int. J. Syst. Bacteriol. 1994 44:320-323.
[11] Taylor DE
Cloning and sequence analysis of two copies of a 23S rRNA gene from Helicobacter pylori and association of clarithromycin resistance with 23S rRNA mutations. Antimicrob. Agents Chemother. 1997 41:(12) 2621-2628.
[12] El-Omar EM
Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 2000 404:398-402.

Principle of Pyrosequencing and its Application in DNA Sequencing and SNP analysis
Huang wenjin
[Abstract] Pyrosequencing is a new kind of method for DNA sequencing
analysis system based on Pyrosequencing can be used for DNA sequencing SNP analysis and allele frequency determination. Principle of Pyrosequencing and its application is described in this article.
[Key words] Pyrosequencing DNA sequencing SNP analysis

婵犵數濮烽弫鎼佸磻閻愬搫鍨傞柛顐f礀缁犱即鏌熼梻瀵歌窗闁轰礁瀚伴弻娑㈩敃閿濆洩绌块悷婊呭鐢帡鎮欐繝鍥ㄧ厓閻熸瑥瀚崝銈吤瑰⿰鍫㈢暫闁哄矉缍侀幃銏ゆ偂鎼存繂鏋堟繝纰樺墲瑜板啫锕㈤柆宥呯劦妞ゆ帒鍠氬ḿ鎰版煙缁嬫寧鎲搁柍褜鍓氱粙鍫ュ疾濠靛鐒垫い鎺戝濞懷囨煏閸喐鍊愮€殿噮鍋婂畷鎺楁倷閺夋垟鍋撻柨瀣ㄤ簻闁瑰搫绉堕崝宥夋煟閿曗偓闁帮絽顫忛搹瑙勫珰闁圭粯甯╅崝澶岀磽娴e壊鍎愰悽顖椻偓宕囨殾婵犻潧顑呯粻铏繆閵堝倸浜剧紓浣插亾濠㈣埖鍔栭悡鐔兼煛閸愩劌鈧摜鏁懜鍨氦婵犻潧娲ㄧ弧鈧梺姹囧灲濞佳冪摥婵犵數鍋犵亸娆愮箾閳ь剛鈧娲橀崹鍧楃嵁濮椻偓楠炲洦鎷呴悷鏉垮帪闂佽姘﹂~澶娒洪弽顬℃椽濡搁埡鍌氫患闂佹儳绻愬﹢杈╁娴犲鐓曢悘鐐插⒔閹冲懏銇勯敂濂告濞e洤锕、鏇㈡晲閸モ晝鍘滈柣搴ゎ潐濞叉ê煤閻旂鈧線寮崼婵嗙獩濡炪倖鐗徊鍓х矈椤愶附鈷掑ù锝囨嚀椤曟粎绱掔拠鎻掆偓鍧楀箖瑜旈獮妯侯熆閸曨厼鏋旈柍褜鍓ㄧ紞鍡涘窗濡ゅ懏鍋傛繛鍡樺姉缁犻箖鏌ゆ總鍓叉澓闁搞倖鐟﹂〃銉╂倷鏉堟崘鈧潡鏌$仦鐐鐎规洖鐖兼俊鎼佸Ψ閵夛附鍤堥梺璇插椤旀牠宕抽鈧畷婊堟偄閼测晛绁﹂悗骞垮劚椤︿粙寮繝鍥ㄧ厽闁挎繂鎳忓﹢鐗堢箾閸喐鍊愭慨濠勭帛閹峰懘鎸婃径澶嬬潖闂備胶鍎甸崜婵單涢崘銊ф殾鐟滅増甯楅幆鐐淬亜閹板墎绋婚柣婵堝厴濮婅櫣绮旈崱妤€顏存繛鍫熸礃閵囧嫰濡烽妷褍鈪甸梺鍝勬湰閻╊垶鐛鈧幊鐘活敆婢跺瑩婊冣攽閻愬樊鍤熷┑顖e弮瀹曞綊宕奸弴鐐舵憰闂佸搫娲㈤崹褰掔嵁閵忊€茬箚闁靛牆鎷戝銉╂煕閹捐鎲鹃柡宀嬬秮婵偓闁宠桨鑳舵禒顓熺節閵忋垺鍤€婵☆偅顨呭畵鍕⒑閸︻厼顣兼繝銏★耿閿濈偤宕ㄧ€涙ḿ鍘藉┑鐐叉閼活垱绂嶉幆褉鏀介柣鎰皺濠€鎾煕婵犲啯绀嬫繝鈧笟鈧娲箰鎼达絿鐣靛┑鈽嗗亝閻熝呭垝閸懇鍋撻敐搴℃灍闁绘挸鍟伴幉绋库堪閸繄顦┑顔斤供閸橀箖鍩炲澶嬬叄闊洦鍑瑰ḿ鎰偓瑙勬礃閻擄繝寮诲☉銏犵疀闁靛⿵闄勯悵鏍ь渻閵堝倹娅囬柛蹇旓耿瀵濡搁妷銏℃杸闂佺硶鍓濋悷銉╁焻闂堟稈鏀介柍钘夋閻忕姵銇勯幋婵愭█鐎殿喛顕ч埥澶愬閻樻鍞洪梻浣烘嚀椤曨參宕曢幇顑╂盯鏁撻悩鏂ユ嫼闁荤姴娲ゅ鍫曞船婢跺ň鏀芥い鏂挎惈閳ь剚顨堥崚鎺戭潩閼哥數鍔堕悗骞垮劚閹虫劙藝閵娿儺娓婚柕鍫濇鐏忛潧鈹戦鎯у幋妞ゃ垺鐟╅獮鎺懳旀担鍙夊闂佽崵濮村ú鐘诲焵椤掑啯鐝柣蹇庣窔濮婃椽宕ㄦ繝鍐弳婵°倗濮甸幃鍌炲春閵忋倕绠婚悹鍥皺椤撴椽姊洪幐搴㈩梿婵☆偄瀚埢鎾诲Ψ閵夘喗瀵岄梺闈涚墕濡稒鏅堕鍌滅<妞ゆ棁鍋愰悞鎼佹煕閳哄倻娲寸€殿喕绮欓、姗€鎮㈤崫鍕疄濠电姷鏁搁崑娑樜涘▎鎾崇闁哄洢鍨洪崐鍫曟煃閸濆嫬浜炴繛鍫滅矙閺岋綁骞囬鈧痪褔鏌涢悩绛硅€块柡宀€鍠栭、娑橆潩濮f鍛亾濞堝灝娅橀柛锝忕到閻g兘骞掗幊铏⒐閹峰懐鎲撮崟顓炵祷

10x Genomics闂傚倸鍊搁崐椋庣矆娓氣偓楠炴牠顢曢敃鈧壕褰掓煟閻旂厧浜伴柣鏂挎閹便劌顪冪拠韫婵°倗濮烽崑鐐烘偋閻樿鐏抽柡鍌濓骏閳ь剚甯楅崚濠囨偉閸撳潰 HD 闂傚倷娴囬褏鈧稈鏅犻、娆撳冀椤撶偟鐛ラ梺鍦劋椤ㄥ懐澹曟繝姘厵闁告挆鍛闂佺粯鎸诲ú姗€骞堥妸銉庣喖鎮℃惔鈥茬帛闂備浇顕х换鎺撴叏閻戣棄鐒垫い鎺戝枤濞兼劖绻涢崣澶岀煉鐎规洑鍗抽獮姗€鎳滃▓鎸庣稐闂備礁婀遍崕銈夈€冮崨瀵稿祦闁靛繆鍓濋崣蹇旀叏濡も偓濡鏅堕灏栨斀妞ゆ梻鍘ч弳锝嗘叏婵犲啯銇濈€规洏鍔嶇换婵嬪磼濠婂懏鍣┑鐘殿暯濡插懘宕戦崨顖氬灊鐎广儱顦闂佸搫鍟悧鍡欑不閻熸噴褰掓晲閸ャ劌娈屾繛瀵稿О閸ㄨ棄顫忓ú顏勭闁绘劖褰冩慨澶愭⒑閸濆嫭鍣虹紒顔芥崌楠炲啯銈i崘鈺冨姸閻庡箍鍎卞Λ娑㈠储闁秵顥婃い鎰╁灪閹兼劖銇勯幋婵囧櫤闁逛究鍔戦崺鈧い鎺嗗亾闁宠鍨块幃娆戔偓娑欋缚缁嬪洤鈹戦埥鍡椾簼缂侇喗鎸绘穱濠囨偨缁嬭法鐤€闂佸搫顦悘婵嗙暤閸℃稒鈷戠紓浣骨樼紓姘舵煛娴h鍊愰柟顔瑰墲閹峰懘鎼归崷顓ㄧ闯濠电偠鎻徊浠嬪箟閳ョ鑰块柣妤€鐗呯换鍡涙煟閹邦垰鐓愭い銉ヮ樀閹藉爼鎮欓悜妯煎幈閻熸粌閰i妴鍐川椤栨粎鐒奸梺绯曞墲缁嬫帡鎮¢弴銏$厓闁宠桨绀侀弳鍫㈢磽閸屾稑鍝洪柡灞界Х椤т線鏌涜箛鏃傘€掗柛鎺撳笒閳诲酣骞橀搹顐も偓顒勬倵楠炲灝鍔氭い锔垮嵆瀵煡骞栨担鍦弳闂佺粯娲栭崐鍦偓姘炬嫹

濠电姷鏁告慨鐑藉极閹间礁纾绘繛鎴烆焸濞戞瑦鍎熼柕濞垮劚閻庮參姊洪崗鑲┿偞闁哄懏绮岄悾鐑藉蓟閵夛箑鈧敻鏌ㄥ┑鍡涱€楀ù婊呭仱閺屽秶绱掑Ο娲绘闂佽鍠楅〃濠囧极閹邦厽鍎熼柍銉ョ-椤旀垹绱撻崒娆愵樂闁煎疇娉涢埢宥嗘櫠娣囩殜t闂傚倸鍊搁崐椋庢濮橆兗缂氱憸宥堢亱濠德板€曢幊蹇涘疾濠靛鐓ユ繝闈涙瀹告繄绱掗悩铏叆妞ゎ厼娼¢幊婊堟濞戞﹩娼撴繝纰樻閸嬪懓鎽梺闈涙搐鐎氫即鐛Ο鍏煎磯閺夌偞澹嗛幑鏇犵磽閸屾艾鈧摜绮斿畷鍥偨婵ǹ娉涢拑鐔哥箾閹存瑥鐏╅柛鎰ㄥ亾闂備線娼ц噹闁告劧绲剧€氭稑鈹戦悩鍨毄闁稿鐩幃褎绻濋崶褍鍋嶅銈冨劤椤庢€盤R缂傚倸鍊搁崐鎼佸磹閻戣姤鍊块柨鏂垮⒔閻瑩鏌熼悜姗嗘畷闁稿骸瀛╅妵鍕冀椤愵澀绮堕梺缁樺笒閻忔岸濡甸崟顖氱闁糕剝銇炴竟鏇熶繆閻愵亜鈧呯磽濮樿泛纭€闁规儼妫勭粻鏍喐閺傝法鏆︽い鎰剁畱鍞梺闈涚墕濡鍒婃导瀛樷拻濞撴埃鍋撻柍褜鍓涢崑娑㈡嚐椤栨稒娅犻柡澶嬪灍閺€浠嬫煃閵夛箑澧柛銈囧枛閺屽秷顧侀柛鎾卞妿缁辩偤宕卞☉妯碱槶濠殿喗枪濞夋稑效閺屻儲鐓冮柛婵嗗閸f椽鏌涙繝鍌滀粵缂佺粯鐩獮瀣倷閸偄娅戝┑鐘愁問閸犳牠宕幘顔艰摕婵炴垯鍨圭猾宥夋煙閻愵剚缍戞い蹇ユ嫹

闂傚倸鍊搁崐椋庣矆娓氣偓楠炲鏁撻悩顔瑰亾閸愵喖骞㈡俊鐐存礀閹碱偊銈导鏉戝窛妞ゆ挾鍋熸禍浼存⒒婵犲骸浜滄繛璇у缁瑩骞掑Δ鈧崥褰掓煕閺囥劌鐏¢柣鎾跺枛閺岀喖鏌囬敃鈧晶濠氭煕閵堝洤鏋涢柡灞炬礋瀹曞ジ鎮㈢粙鍨敪婵°倗濮烽崑鐐烘偋閻樺樊鍤曢柛顐f礀缁狅綁鏌eΟ娲诲晱闁哥偛鐖煎缁樻媴閸涘﹤鏆堥梺鑽ゅ枂閸庤精鐏嬪┑鐘绘涧濡厼岣块弽褉鏀介柣妯虹枃婢规﹢骞嗛悢鍏尖拺闂傚牊渚楀褏绱掗懠顒€甯堕棁澶愭煟閹达絽袚闁绘挾鍠栭弻锝呂熸径绋挎儓闂佸憡鏌ㄧ粔鍫曞箟閹间礁绾ч柛顭戝枟濞堝姊虹拠鈥虫灁闁稿海鏁诲顐﹀箻缂佹ɑ娅㈤梺璺ㄥ櫐閹凤拷 - 濠电姷鏁告慨鐑藉极閹间礁纾块柟瀵稿Т缁躲倝鏌﹀Ο渚Ш闁哄棴闄勯妵鍕箳閹存繍浠奸梺娲诲幗椤ㄥ﹪寮诲☉銏犵労闁告劧绱曠槐鏉款渻閵堝倹娅嗛柣鎿勭節瀵鈽夐姀鐘靛姶闂佸憡鍔栭崕鍐残掗埀顒勬⒒娴e憡璐¢柛搴涘€濋獮鎰偅閸愶腹鍋撻崨瀛樺€婚柦妯侯槺椤旀劙鏌℃径濠勫濠⒀呮櫕缁棃鎮介崨濠勫幈闁瑰吋鐣崹褰掓倶閵夆晜鐓冮柦妯侯樈濡偓濡ょ姷鍋為敃銏ゃ€佸☉姗嗘僵妞ゆ劑鍩勫Λ婊冣攽閻樺灚鏆╅柛瀣仱瀹曞綊宕奸弴鐐殿啇闂佸啿鎼崐濠氥€呴崣澶岀瘈濠电姴鍊搁弳鐔兼煛閸☆厾鐣甸柡宀嬬秮瀵噣宕堕…鎴滃摋缂備胶鍋撻崕鎶藉Χ閹间礁钃熸繛鎴欏灩閻掓椽鏌涢幇闈涘箹妞ゃ儲绻堝娲川婵犲啠鎷归柣銏╁灲缁绘繈鐛崘銊庢棃宕ㄩ鐔风ザ婵$偑鍊栭幐楣冨磻濡綍锝夊箛閻楀牃鎷虹紓鍌欑劍宀e潡鍩婇弴銏$厽闁绘梹绻傚ú銈囩不椤栫偞鍊甸柨婵嗛閺嬫稓绱掗悩宕囧弨闁哄瞼鍠愮€佃偐鈧稒蓱闁款參姊虹拠鈥虫灆缂佽埖鑹鹃~蹇撁洪鍕獩婵犵數濮撮崐濠氼敄閸屾稓绡€闁冲皝鍋撻柛鏇炵仛閻や線鎮楀▓鍨灍濠电偛锕獮鍐閵堝棗浜楅柟鑹版彧缂嶅棝宕憴鍕箚闁绘劦浜滈埀顒佺墵瀵濡搁埡鍌氣偓鑸电節闂堟稓澧㈤柣婊呯帛缁绘盯骞嬪▎蹇曚痪闂佺粯鎸婚悷鈺呭箖瑜版帒惟闁靛鍠楃瑧闂備胶枪閿曘倝鈥﹂悜钘夌畺闁绘垼妫勯~鍛存煏閸繃顥犻柛妯哄船閳规垿鎮欓崣澶樻!闂佹寧宀搁弻锝堢疀鐎n亜濮曢梺闈涙搐鐎氫即銆侀弴銏狀潊闁宠桨绀佹竟搴ㄦ煟鎼淬値娼愭繛鍙夌矋缁绘盯鍩€椤掑倵鍋撳▓鍨灆缂侇喗鐟╅妴渚€寮介褎鏅濋梺鎸庣箓閹冲繒鎷犻悙鐑樺€垫繛鍫濈仢閺嬬喖鏌熼鐓庘偓鍨嚕椤愶箑绠荤紓浣股戝▍銏ゆ⒑鐠恒劌娅愰柟鍑ゆ嫹

婵犵數濮烽弫鎼佸磻閻愬搫鍨傞柛顐f礀缁犱即鏌熼梻瀵歌窗闁轰礁瀚伴弻娑㈩敃閿濆洩绌块悷婊呭鐢帡鎮欐繝鍐︿簻闁瑰搫妫楁禍楣冨级閳哄倻绠栫紒缁樼箞閹粙妫冨ù韬插灲閹顫濋悡搴㈢彎闂佽鍨伴張顒勫箚閺冨牆惟闁挎梹鍎抽獮姗€鏌f惔銈庢綈婵炲弶鐗曠叅闁靛牆妫涢々閿嬬節婵犲倻澧涢柣鎾存礋閺岋綁骞囬鍌涙喖闁诲繐楠忕粻鎾诲蓟閻斿吋瀵犲璺号堥崑鎾寸節濮橆剛鍔﹀銈嗗笒閿曪妇绮旈悽鍛婄厱闁圭偓娼欓崫鐑樸亜閵忊剝顥堝┑陇鍩栧鍕偓锝庝簷閸栨牠姊绘担绛嬫綈濠㈢懓顑夊鎻掆槈濞嗗海绠氶梺鎯х箰濠€杈╁婵傚憡鐓忓┑鐐戝啫鏋ら柡鍡╁弮濮婃椽鎮烽弶鎸幮╅梺鐟板暱闁帮綁濡堕鍛嚤闁哄鍨归ˇ銊╂⒑闂堟丹娑㈠焵椤掑嫬纾婚柟鎯ь嚟缁♀偓濠殿喗锕╅崢楣冨储閹间焦鐓熼幖鎼灣缁夌敻鏌涚€n亜顏柟渚垮姂瀹曞ジ濡烽敂鎯у箰闁诲骸鍘滈崑鎾绘煃瑜滈崜鐔风暦閻楀牊鍎熼柕濞垮劤閸樻椽姊洪崫鍕殭闁绘妫濆畷锟犲箮閼恒儳鍘藉┑鈽嗗灡鐎笛囨偟椤忓懏鍙忛柨婵嗘噹椤忣參鏌″畝瀣ɑ闁诡垱妫冩慨鈧柍鍨涙櫅椤矂姊绘担鍛婂暈婵﹤婀遍弫顕€鍨惧畷鍥ㄦ濠电娀娼ч鍡涘磻閸曨垱鐓熼柟鎯у暱椤斿倿鏌曟径鍡樻珕闁绘挶鍎甸弻锝夊即閻愭祴鍋撻崷顓涘亾濮樼偓瀚�

订阅生物通快讯

订阅快讯:

最新文章

关注订阅号/掌握最新资讯

今日动态 | 人才市场 | 新技术专栏 | 中国科学人 | 云展台 | BioHot | 云讲堂直播 | 会展中心 | 特价专栏 | 技术快讯 | 免费试用

版权所有 生物通

Copyright© eBiotrade.com, All Rights Reserved

联系信箱:

粤ICP备09063491号